Share

cover art for AtlantECO podcast

AtlantECO podcast

Stories of the Atlantic Ocean through human adventures and scientific advances


Latest episode

  • 8. 52. Artificial intelligence in oceanography

    13:19||Season 3, Ep. 8
    Diving into Ocean Dynamics: A Conversation with Bruno Buongiorno NardelliIn this episode of the AtlantECO podcast, we got the chance to sit down with Bruno Buongiorno  Nardelli, a researcher based in Italy, who has spent over two decades studying the impact of ocean dynamics on climate and marine ecosystems. Join us as we unravel the complexities of his work, understand its significance, and explore what the future holds.Bruno's research focuses on understanding how various oceanic variables contribute to climate change and the behavior of marine ecosystems. Initially, his scientific education centered around geophysical fluid dynamics and remote sensing. Combining these areas, he has developed techniques utilising statistical analysis, physical models, and artificial intelligence to interpret observations and improve our knowledge of the earth’s systems.One core aspect of his research involves collecting and analyzing data from both remote sensing technologies and in situ observations. This approach allows scientists to develop more accurate predictive models and forecasts by understanding underlying processes more thoroughly. He stresses the importance of continuous observation to grasp these complex dynamics, as surface-level data alone cannot provide the full picture.Within the AtlantECO project, Bruno's efforts are directed towards analysing data to understand phytoplankton abundance through ocean color satellite data and separating natural oceanic oscillations from those induced by anthropogenic activities. Such work is vital not just for determining the ocean’s current state but also for predicting future impacts on marine ecosystems and validating climatic models.Bruno mentions that his work extends to shaping future satellite missions for the European Space Agency. These missions aim to improve our observational capabilities, especially concerning the air-sea interface dynamics. Another significant aspect is understanding how mesoscale turbulence helps transport carbon vertically within the ocean—a critical component of the global carbon cycle.Bruno acknowledges that scientific investigation is a never-ending journey. The continuous cycle of discovery and inquiry is central to advancing our understanding of ocean dynamics and their broader implications. Once AtlantECO ends, the data and insights generated will serve as a foundation for future research and projects.The ultimate goal is to provide robust data and sophisticated tools that will enable policymakers to make informed decisions regarding oceanic and environmental stewardship. Thus, Bruno and his colleagues' work is deeply intertwined with the broader mission of sustaining and protecting ocean health in this era of rapid climate change.More on AtlantECO: www.atlanteco.eu  The AtlantECO project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 862923. This output reflects only the author’s view and the European Union cannot be held responsible for any use that may be made of the information contained therein.

More episodes

View all episodes

  • 7. 51. Exploring the Potential of the Atlantic Ocean: What is Bioprospecting?

    22:17||Season 3, Ep. 7
    In this episode, we delve into the fascinating world of bioprospecting with Tonje Heggeset and Giang-Son Nguyen from SINTEF, a renowned research organisation in Norway. In conversation with Tonje and Giang-Son, we uncover the essence of bioprospecting, its applications, and its significance within the AtlantECO project. First, we ask… what is bioprospecting? Bioprospecting involves exploring various natural sources like plants, animals, and microorganisms for commercially valuable substances such as medicinal drugs, biochemicals, and other materials. In the context of the project, the focus is on microorganisms, including bacteria and fungi, discovered in environments rich in biodiversity. These microorganisms can potentially yield new antibiotics, anti-cancer compounds, and industrial enzymes, contributing to significant advancements in medicine and industry.We then transition into the methodologies of bioprospecting. Our guests explain that there are two primary approaches: functional screening and genome/metagenome sequencing. Functional screening involves searching for specific activities in nature, such as antibiotics. On the other hand, genome sequencing entails identifying genes and predicting their functions using bioinformatics tools.Within the AtlantECO project, SINTEF is in charge of molecular bioprospecting, focusing on discovering new enzymes relevant to stakeholders. This involves data mining from various sources, functional screening, and creating a database of genetic markers for biological sensors. The aim is to provide valuable enzyme candidates for diagnostics, molecular research, and other applications, contributing to the blue economy.More on AtlantECO: www.atlanteco.eu  The AtlantECO project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 862923. This output reflects only the author’s view and the European Union cannot be held responsible for any use that may be made of the information contained therein.
  • 6. 50. Modelling a constantly moving Ocean

    16:05||Season 3, Ep. 6
    In this episode of the AtlantECO podcast, we explore the journeys and research of early-stage researchers involved in the AtlantECO project. Today, we meet Darshika Manral, a PhD candidate in physical oceanography at Utrecht University in the Netherlands.Darshika’s connection with the ocean came later in her career. She began in Information Technology with a Bachelor’s degree and worked as a software engineer. However, a sabbatical brought her to marine mammal research in the Lakshadweep Islands, igniting her passion for the ocean. This pivotal experience led her to pursue an Erasmus Mundus master's in marine science, blending her programming skills with ocean studies.Darshika investigates how ocean currents transport substances like plankton, plastics, nutrients, and heat using Lagrangian modelling. This method tracks the movement of virtual particles, providing insights into marine connectivity and helping predict future ocean changes. Her research plays a key role in AtlantECO’s mission to understand plankton distribution and marine ecosystems better.Within AtlantECO, Darshika's work on seascape and connectivity focuses on plankton networks and environmental constraints. Combining her model outputs with real-world observations, she collaborates with biologists to offer a comprehensive view of oceanic processes, supporting better marine conservation strategies.In her final PhD year, Darshika aims to refine her models further and strengthen collaborations. She is open to continuing in academia or any ocean research-related field, with a keen interest in science communication. Her advice for budding marine scientists? Embrace interdisciplinary research, seek community support, and remain observant of the natural world.Darshika’s message is clear: anyone can develop a connection with the ocean by staying curious and observant. Her inspiring journey underscores the importance of passion and openness to new challenges. We thank Darshika for sharing her insights and wish her success in her future endeavors.More on AtlantECO: www.atlanteco.eu  The AtlantECO project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 862923. This output reflects only the author’s view and the European Union cannot be held responsible for any use that may be made of the information contained therein.
  • 5. 49. Ocean cultures in South Africa

    16:56||Season 3, Ep. 5
    In the latest AtlantECO podcast we are exploring the fascinating realm of ocean cultures with our guest, Leila Nefdt from the University of Cape Town in South Africa.Leila brings a wealth of experience in marine biology and a deep commitment to ocean conservation and public engagement. Her journey from marine ecologist to science communicator offers unique insights into bridging the gap between scientific knowledge and community awareness.In our conversation, Leila shares her passion for nature, particularly the ocean, and her dedication to fostering ocean awareness through initiatives like See the Bigger Picture and her role at MARIS. She highlights the importance of connecting diverse communities with marine science and conservation efforts.We delve into the concept of ocean cultures, a term evolving from ocean literacy to encompass a broader understanding of the ocean's influence on society and vice versa. Leila explains how this shift in terminology reflects the rich tapestry of beliefs, traditions, and interactions that shape people's relationship with the ocean, especially in South Africa.Despite South Africa's coastal abundance, Leila notes the disparities in ocean access and perception among different populations. While some communities rely on the ocean for their livelihoods and spiritual practices, others face barriers like limited swimming skills or geographic distance from the coast.Turning to AtlantECO's contributions, Leila discusses ongoing efforts to enhance ocean literacy and engagement in South Africa. From developing educational resources to assessing marine science curricula, AtlantECO aims to bridge the gap between scientific knowledge and local needs.Leila emphasizes the importance of collaboration and cultural sensitivity in promoting ocean stewardship. By fostering dialogue between scientists, educators, and communities, AtlantECO seeks to empower individuals to become advocates for marine conservation.With continued effort and collaboration, we can nurture a deeper connection to the ocean and ensure its protection for generations to come.Stay tuned for more updates on AtlantECO's initiatives and how you can get involved in shaping our ocean future.More on AtlantECO: www.atlanteco.eu  The AtlantECO project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 862923. This output reflects only the author’s view and the European Union cannot be held responsible for any use that may be made of the information contained therein.
  • 4. 48. Strengthening biodiversity observation in support of decision making

    31:24||Season 3, Ep. 4
    In this episode of the AtlantECO podcast we delve into the Marco Bolo project with guest Nicolas Pade, the project coordinator. Marco Bolo is a research and innovation initiative funded by the European Union's Horizon Europe program. Nicolas shares his personal connection to the ocean, rooted in childhood experiences and a lifelong passion for marine biology.The discussion highlights the need to enhance biological observation in marine sciences, which often focus on physics and chemistry. Nicolas stresses the importance of integrating biology into observation efforts, aiming to create a robust base for biological data collection. He emphasises the necessity of open data practices and stakeholder engagement to ensure the data collected are relevant and utilised effectively.The Marco Bolo project addresses these challenges through three main components:Data Interoperability: Implementing high standards for data interoperability, making data open and accessible.Data Collection and Application: Developing robust protocols for data collection, applying collected data to inform environmental indicators and essential ocean variables.Stakeholder Engagement: Engaging stakeholders through surveys, community of practice meetings, and collaboration with other projects to ensure alignment with user needs.Nicolas highlights the importance of collaboration and coordination with other projects, acknowledging the complexity of marine observation and the diverse needs of stakeholders. The project aims to bridge the gap between research and decision-making, striving to create a global impact in marine science.Looking ahead, the project anticipates further stakeholder engagement, including community of practice meetings and stakeholder events. They also plan to address challenges such as adapting data to different indicators and expanding their team through recruitment efforts.Overall, the Marco Bolo project represents a concerted effort to advance marine science and foster collaboration within the research community, with the ultimate goal of improving our understanding and management of the oceans.Find out more on MARCO BOLO: https://marcobolo-project.eu/ More on AtlantECO: www.atlanteco.eu  The AtlantECO project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 862923. This output reflects only the author’s view and the European Union cannot be held responsible for any use that may be made of the information contained therein.
  • 3. 47. Shallow sea mining

    18:45||Season 3, Ep. 3
    In the latest episode of the AtlantECO podcast, we delve into one of our case studies, which aims to apply the knowledge and resources developed in the project to existing challenges in shallow sea diamond mining. Our guest, Natasha Karenyi, sheds light on the considerations necessary for developing and implementing environmental regulations of coastal areas.Natasha, a marine biologist and lecturer at the University of Cape Town (UCT), shares her journey toward studying and researching marine biology. With a childhood curiosity sparked by high school biology classes and a love for swimming, Natasha's passion for the ocean led her to specialise in benthic ecology and pursue a PhD at the Nelson Mandela University.In our case study, we focus on two countries, Namibia and South Africa, both of which have keen interests in diamond and phosphate mining, as well as petroleum extraction. However, these countries have different policy frameworks, data limitations, and understandings of their marine systems. Natasha highlights the specific challenges and needs within each country and the importance of addressing them to develop effective environmental regulations.Supporting Policy Making through AtlantECO: to address these challenges, AtlantECO implements various strategies. In Namibia, they collaborate with the Namibian Ministry of Fisheries and Marine Resources and Debmarine Namibia to provide baseline benthic information for informed policy decisions. In South Africa, they work with the Department of Mineral Resources to develop guidelines for environmental management of ocean mining.Through research and collaborative efforts, Natasha and her team have identified several challenges that hinder effective environmental impact assessments (EIAs) and marine spatial planning (MSP) processes. These challenges include the lack of consideration for cumulative and indirect impacts, insufficient inclusion of social and economic aspects, and limited access to information; these aspects were all included in the recommendations made recently. As we progress, we aim to further support the different stakeholders in their endeavour to develop EIA processes, streamline reporting standards across sectors, and enhance the integration of social and economic considerations.More on AtlantECO: www.atlanteco.eu  The AtlantECO project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 862923. This output reflects only the author’s view and the European Union cannot be held responsible for any use that may be made of the information contained therein.
  • 2. 46. Mega marine heatwaves in the North Atlantic

    21:49||Season 3, Ep. 2
    In the latest episode of the AtlantECO Podcast, we delve into the critical topic of mega heatwaves in the Atlantic withguest Thomas Frölicher. The conversation covers the causes, consequences, monitoring, and future expectations of theseincreasingly observed phenomena, including the recent heatwave observed in the North Atlantic.Thomas Frölicher, originally from landlocked Switzerland, shares his unique journey into oceanography. Growing up with a curious mind inspired by his father's interest in physics, Thomas eventually found his passion for environmental science. His focus on atmospheric physics led him to explore oceanography during his PhD, where he investigated the variations in oceanic oxygen concentration and its connection to human-caused global warming.We then discuss marine heatwaves, defined as periods of persistently warm ocean temperatures. Thomas explains that these events are becoming more prevalent globally, affecting ecosystems, weather patterns, and land conditions. The North Atlantic, in particular, is experiencing mega heatwaves, with temperatures significantly higher than ever recorded. Thomas discusses potential causes of marine heatwaves, such as enhanced air-sea heat uptake, changing ocean currents, and various other factors. The global ocean currently faces record-high temperatures, with about 30% experiencing a marine heatwave. The North Atlantic stands out with temperatures 0.5 degrees higher than previous records, raising concerns among scientists.To understand these heat waves, scientists rely on high-temporal-resolution datasets from satellites, ARGO floats, buoys, and ocean models. Thomas emphasises the importance of collaboration among researchers with diverse expertise to comprehensively analyse the multitude of factors contributing to the current temperature anomalies. We then touch upon the consequences of mega heat waves on marine life and ecosystems, and Thomas highlights the sensitivity of ecosystems to high temperatures, leading to damages worth billions of dollars in industries such as fisheries and tourism. In AtlantECO project, Thomas and his team aim to assess the impact of a combination of multiple extreme events in the Atlantic, providing valuable data for managing ocean resources and mitigating risks.More on AtlantECO: www.atlanteco.eu  The AtlantECO project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 862923. This output reflects only the author’s view and the European Union cannot be held responsible for any use that may be made of the information contained therein.