Share

cover art for Thaleia Doudali | Is Machine Learning Necessary for Cloud Resource Usage Forecasting? | #43

Disseminate

Thaleia Doudali | Is Machine Learning Necessary for Cloud Resource Usage Forecasting? | #43

Season 6, Ep. 3
Summary:


In this week's episode, we talk with Thaleia Doudali and explore the realm of cloud resource forecasting, focusing on the use of Long Short Term Memory (LSTM) neural networks, a popular machine learning model. Drawing from her research, Thaleia discusses the surprising discovery that, despite the complexity of ML models, accurate predictions often boil down to a simple shift of values by one time step. The discussion explores the nuances of time series data, encompassing resource metrics like CPU, memory, network, and disk I/O across different cloud providers and levels. Thaleia highlights the minimal variations observed in consecutive time steps, prompting a critical question: Do we really need complex machine learning models for effective forecasting? The episode concludes with Thaleia's vision for practical resource management systems, advocating for a thoughtful balance between simple solutions, such as data shifts, and the application of machine learning. Tune in as we unravel the layers of cloud resource forecasting with Thaleia Doudali.


Links:

More episodes

View all episodes

  • 2. Till Döhmen | DuckDQ: A Python library for data quality checks in ML pipelines

    58:12||Season 10, Ep. 2
    In this episode we kick off our DuckDB in Research series with Till Döhmen, a software engineer at MotherDuck, where he leads AI efforts. Till shares insights into DuckDQ, a Python library designed for efficient data quality validation in machine learning pipelines, leveraging DuckDB’s high-performance querying capabilities.We discuss the challenges of ensuring data integrity in ML workflows, the inefficiencies of existing solutions, and how DuckDQ provides a lightweight, drop-in replacement that seamlessly integrates with scikit-learn. Till also reflects on his research journey, the impact of DuckDB’s optimizations, and the future potential of data quality tooling. Plus, we explore how AI tools like ChatGPT are reshaping research and productivity. Tune in for a deep dive into the intersection of databases, machine learning, and data validation!Resources:GitHubPaperSlidesTill's Homepagedatasketches extension (released by a DuckDB community member 2 weeks after we recorded!)
  • 1. Disseminate x DuckDB Coming Soon...

    02:40||Season 10, Ep. 1
    Hey folks! We have been collaborating with everyone's favourite in-process SQL OLAP database management system DuckDB to bring you a new podcast series - the DuckDB in Research series!At Disseminate our mission is to bridge the gap between research and industry by exploring research that has a real-world impact. DuckDB embodies this synergy—decades of research underpin its design, and now it’s making waves in the research community as a platform for others to build on and this is what the series will focus on! Join us as we kick off the series with:📌 Daniel ten Wolde – DuckPGQ, a graph workload extension for DuckDB supporting SQL/PGQ📌 David Justen – POLAR: Adaptive, non-invasive join order selection 📌 Till Döhmen – DuckDQ: A Python library for data quality checks in ML pipelines📌 Arjen de Vries – FAISS extension for vector similarity search in DuckDB📌 Harry Gavriilidis – SheetReader: Efficient spreadsheet parsingWhether you're a researcher, engineer, or just curious about the intersection of databases and innovation we are sure you will love this series. Subscribe now and stay tuned for our first episode! 🚀
  • 10. High Impact in Databases with... Anastasia Ailamaki

    46:17||Season 7, Ep. 10
    In this High Impact in Databases episode we talk to Anastasia Ailamaki.Anastasia is a Professor of Computer and Communication Sciences at the École Polytechnique Fédérale de Lausanne (EPFL). Tune in to hear Anastasia's story! The podcast is proudly sponsored by Pometry the developers behind Raphtory, the open source temporal graph analytics engine for Python and Rust.You can find Anastasia on:HomepageGoogle ScholarLinkedIn
  • 21. Anastasiia Kozar | Fault Tolerance Placement in the Internet of Things | #61

    49:02||Season 6, Ep. 21
    In this episode, we chat with Anastasiia Kozar about her research on fault tolerance in resource-constrained environments. As IoT applications leverage sensors, edge devices, and cloud infrastructure, ensuring system reliability at the edge poses unique challenges. Unlike the cloud, edge devices operate without persistent backups or high availability standards, leading to increased vulnerability to failures. Anastasiia explains how traditional methods fall short, as they fail to align resource allocation with fault tolerance needs, often resulting in system underperformance.To address this, Anastasiia introduces a novel resource-aware approach that combines operator placement and fault tolerance into a unified process. By optimizing where and how data is backed up, her solution significantly improves system reliability, especially for low-end edge devices with limited resources. The result? Up to a tenfold increase in throughput compared to existing methods. Tune to learn more! Links:Fault Tolerance Placement in the Internet of Things [SIGMOD'24]The NebulaStream Platform: Data and Application Management for the Internet of Things [CIDR'20]nebula.stream
  • 20. Liana Patel | ACORN: Performant and Predicate-Agnostic Hybrid Search | #60

    52:49||Season 6, Ep. 20
    In this episode, we chat with with Liana Patel to discuss ACORN, a groundbreaking method for hybrid search in applications using mixed-modality data. As more systems require simultaneous access to embedded images, text, video, and structured data, traditional search methods struggle to maintain efficiency and flexibility. Liana explains how ACORN, leveraging Hierarchical Navigable Small Worlds (HNSW), enables efficient, predicate-agnostic searches by introducing innovative predicate subgraph traversal. This allows ACORN to outperform existing methods significantly, supporting complex query semantics and achieving 2–1,000 times higher throughput on diverse datasets. Tune in to learn more!Links:ACORN: Performant and Predicate-Agnostic Search Over Vector Embeddings and Structured Data [SIGMOD'24]Liana's LinkedInLiana's X
  • 9. High Impact in Databases with... David Maier

    01:02:24||Season 7, Ep. 9
    In this High Impact episode we talk to David Maier.David is the Maseeh Professor Emeritus of Emerging Technologies at Portland State University. Tune in to hear David's story and learn about some of his most impactful work.The podcast is proudly sponsored by Pometry the developers behind Raphtory, the open source temporal graph analytics engine for Python and Rust.You can find David on:HomepageGoogle Scholar
  • 19. Raunak Shah | R2D2: Reducing Redundancy and Duplication in Data Lakes | #59

    31:09||Season 6, Ep. 19
    In this episode, Raunak Shah joins us to discuss the critical issue of data redundancy in enterprise data lakes, which can lead to soaring storage and maintenance costs. Raunak highlights how large-scale data environments, ranging from terabytes to petabytes, often contain duplicate and redundant datasets that are difficult to manage. He introduces the concept of "dataset containment" and explains its significance in identifying and reducing redundancy at the table level in these massive data lakes—an area where there has been little prior work.Raunak then dives into the details of R2D2, a novel three-step hierarchical pipeline designed to efficiently tackle dataset containment. By utilizing schema containment graphs, statistical min-max pruning, and content-level pruning, R2D2 progressively reduces the search space to pinpoint redundant data. Raunak also discusses how the system, implemented on platforms like Azure Databricks and AWS, offers significant improvements over existing methods, processing TB-scale data lakes in just a few hours with high accuracy. He concludes with a discussion on how R2D2 optimally balances storage savings and performance by identifying datasets that can be deleted and reconstructed on demand, providing valuable insights for enterprises aiming to streamline their data management strategies.Materials:SIGMOD'24 Paper - R2D2: Reducing Redundancy and Duplication in Data LakesICDE'24 - Towards Optimizing Storage Costs in the Cloud
  • 8. High Impact in Databases with... Aditya Parameswaran

    58:57||Season 7, Ep. 8
    In this High Impact episode we talk to Aditya Parameswaran about his some of his most impactful work.Aditya is an Associate Professor at the University of California, Berkeley. Tune in to hear Aditya's story! The podcast is proudly sponsored by Pometry the developers behind Raphtory, the open source temporal graph analytics engine for Python and Rust.Links:EPIC Data LabAnswering Queries using Humans, Algorithms and Databases (CIDR'11)Potter’s Wheel: An Interactive Data Cleaning System (VLDB'01)Online Aggregation (SIGMOD'97)Polaris: A System for Query, Analysis and Visualization of Multi-dimensional Relational Databases (INFOVIS'00)Coping with Rejection PonderYou can find Aditya on:TwitterLinkedInGoogle Scholar
  • 18. Marco Costa | Taming Adversarial Queries with Optimal Range Filters | #58

    37:07||Season 6, Ep. 18
    In this episode, we sit down with Marco Costa to discuss the fascinating world of range filters, focusing on how they help optimize queries in databases by determining whether a range intersects with a given set of keys. Marco explains how traditional range filters, like Bloom filters, often result in high false positives and slow query times, especially when dealing with adversarial inputs where queries are correlated with the keys. He walks us through the limitations of existing heuristic-based solutions and the common challenges they face in maintaining accuracy and speed under such conditions.The highlight of our conversation is Grafite, a novel range filter introduced by Marco and his team. Unlike previous approaches, Grafite comes with clear theoretical guarantees and offers robust performance across various datasets, query sizes, and workloads. Marco dives into the technicalities, explaining how Grafite delivers faster query times and maintains predictable false positive rates, making it the most reliable range filter in scenarios where queries are correlated with keys. Additionally, he introduces a simple heuristic filter that excels in uncorrelated queries, pushing the boundaries of current solutions in the field.SIGMOD' 24 Paper - Grafite: Taming Adversarial Queries with Optimal Range Filters