Partager

Choses à Savoir TECH VERTE
200 000 milliards $ pour « vaincre » le réchauffement climatique ?
Depuis quelques années, une idée jusque-là cantonnée à la science-fiction gagne du terrain dans certains cercles scientifiques et industriels : tenter de freiner le réchauffement climatique non pas en réduisant les émissions de gaz à effet de serre, mais en agissant directement sur le climat lui-même. Cette approche porte un nom : la géo-ingénierie. Et l’une de ses pistes les plus controversées consiste à injecter des particules dans l’atmosphère pour réfléchir une partie du rayonnement solaire.
Le principe n’est pas totalement théorique. Lors de grandes éruptions volcaniques, le dioxyde de soufre projeté dans la stratosphère forme un voile d’aérosols qui refroidit temporairement la planète. Certains chercheurs envisagent donc de reproduire artificiellement ce phénomène. Problème : le dioxyde de soufre est loin d’être anodin. Il peut fragiliser la couche d’ozone, modifier les régimes de précipitations et provoquer des pluies acides. Autant de risques qui font hésiter une partie de la communauté scientifique.
C’est dans ce contexte qu’une équipe de chercheurs s’est demandé s’il existait de meilleures alternatives. Dans une étude publiée dans Geophysical Research Letters, ils ont testé, à l’aide d’un modèle climatique en trois dimensions, plusieurs types de particules susceptibles d’être injectées dans l’atmosphère. Parmi elles : la calcite, l’aluminium, le carbure de silicium… et même la poussière de diamant. Sur le papier, le diamant coche beaucoup de cases. Il réfléchit efficacement la lumière et la chaleur, se disperse sans s’agglomérer, reste suffisamment longtemps dans l’atmosphère et, surtout, il est chimiquement inerte, ce qui limiterait les risques de réactions indésirables comme les pluies acides. Selon les simulations, injecter chaque année cinq millions de tonnes de poussière de diamant pendant quarante-cinq ans permettrait de faire baisser la température moyenne mondiale d’environ 1,6 °C.
Mais le rêve s’arrête net au moment de sortir la calculatrice. Une telle opération coûterait près de 200 000 milliards de dollars. À titre de comparaison, la transition vers une économie bas carbone est estimée à moins de 10 000 milliards de dollars à l’échelle mondiale. La conclusion est sans appel : si la géo-ingénierie fascine par son audace, elle apparaît aujourd’hui comme une solution démesurément coûteuse et risquée. De quoi rappeler que, face au dérèglement climatique, réduire les émissions reste, de loin, l’option la plus réaliste.
More episodes
View all episodes

Un avion électrique pour trajet court arrive en France ?
02:55|À mesure que la pression climatique s’intensifie, l’aviation se retrouve face à une équation redoutable : continuer à relier les territoires sans aggraver son empreinte carbone. Hydrogène, électrification totale, nouvelles architectures… les pistes se multiplient pour tenter de réinventer le transport aérien. Contrairement à une idée reçue, le développement du rail et des transports publics ne suffit pas à couvrir tous les besoins. Dans de nombreuses régions enclavées, peu denses ou montagneuses, l’avion reste parfois la seule option viable. Encore faut-il qu’il devienne plus propre, plus silencieux et économiquement accessible, sans exiger d’infrastructures lourdes.C’est précisément sur ce créneau que se positionne Eenuee, une start-up fondée en 2019 en région stéphanoise. Son ambition : électrifier l’aviation régionale avec un appareil certifiable, efficace et discret. Il y a quelques jours, l’entreprise a annoncé un partenariat stratégique avec Duqueine Group, spécialiste reconnu des matériaux composites. Objectif : accélérer le développement du Gen-e, un avion régional 100 % électrique, dont le premier vol est attendu à l’horizon 2029.Le cahier des charges est clair. L’appareil doit embarquer 19 passagers, afficher une autonomie d’environ 500 kilomètres en mode tout électrique et desservir des liaisons aujourd’hui délaissées par les compagnies traditionnelles faute de rentabilité. Autre atout : il pourra opérer depuis des infrastructures existantes, sans nécessiter la construction de nouveaux aéroports ou d’équipements coûteux. Pour des territoires comme l’Auvergne-Rhône-Alpes, où la topographie complique les déplacements, cette promesse de désenclavement à faible impact carbone est loin d’être anecdotique.Mais l’innovation ne s’arrête pas à la propulsion. Eenuee et Duqueine parient sur une architecture dite de « fuselage porteur ». Plus complexe à concevoir qu’un fuselage tubulaire classique, cette structure permet d’améliorer les performances aérodynamiques et l’efficacité énergétique globale. À cela s’ajoute un concept encore plus audacieux : une version capable de décoller et d’atterrir sur l’eau. Grâce à des hydrofoils — des ailes immergées générant de la portance — l’appareil réduit drastiquement les frottements au décollage, à la manière des bateaux de course.Cette polyvalence ouvre des perspectives commerciales inédites. L’avion pourrait opérer indifféremment depuis une piste ou un plan d’eau, sans démontage, ce qui le rend particulièrement attractif pour des régions comme l’Asie du Sud-Est, la Scandinavie ou le Canada. Contrairement aux hydravions classiques, coûteux à entretenir et limités à l’eau, le Gen-e promet des coûts d’exploitation réduits et une grande flexibilité. Une tentative sérieuse de prouver que l’aviation régionale peut encore avoir un avenir… à condition de le repenser en profondeur.
Xiaomi affole les compteurs avec ses voitures électriques ?
03:09|Xiaomi poursuit son ascension éclair dans l’automobile électrique. Le groupe chinois a publié ses chiffres pour l’exercice 2025 et le cap symbolique est franchi : plus de 400 000 véhicules électriques ont été livrés en un an. Rien que sur le mois de décembre 2025, 50 000 unités ont quitté les chaînes, venant s’ajouter aux 361 625 véhicules écoulés entre janvier et novembre. Une performance qui confirme que Xiaomi n’est plus un simple outsider, mais un acteur industriel désormais installé.Derrière ce total flatteur se cache toutefois un déséquilibre marqué entre les modèles. La berline SU7, premier véhicule de la marque lancé en mars 2024, montre des signes d’essoufflement. En novembre 2025, elle s’est écoulée à 12 520 exemplaires. À l’inverse, le SUV YU7, arrivé sur le marché en juin 2025 pour aller chasser sur les terres du Tesla Model Y, affiche une dynamique spectaculaire : 33 729 livraisons sur le même mois. En six mois à peine, le YU7 a dépassé les 150 000 véhicules livrés, illustrant un basculement clair de la demande vers les SUV. À volumes comparables, la berline accuse désormais un retard de près de 63 % face à son grand frère utilitaire.Pour 2026, Xiaomi prépare un tournant stratégique. Le constructeur annonce l’arrivée de deux nouveaux modèles hybrides reposant sur une architecture EREV, pour « Extended Range Electric Vehicles ». Au programme : un grand SUV sept places et un SUV compact cinq places. Le principe diffère du tout électrique : un moteur thermique embarqué ne sert pas à entraîner les roues, mais agit comme générateur afin de recharger la batterie en roulant. Cette solution permet d’étendre fortement l’autonomie, au prix d’une mécanique plus complexe que celle des plateformes 100 % électriques SU7 et YU7. La berline SU7 n’est pas abandonnée pour autant. Un restylage est prévu en 2026, accompagné d’une déclinaison dite « executive », dont les caractéristiques techniques restent encore confidentielles.Côté distribution, Xiaomi reste pour l’instant concentré sur son marché domestique. Au 31 décembre 2025, le groupe comptait 477 points de vente dans 138 villes chinoises, ainsi que 264 centres de service après-vente. L’international est toutefois dans le viseur. Une arrivée en Europe est annoncée pour 2027, avec des essais déjà en cours en Allemagne afin de valider les normes de sécurité et d’homologation. Une étape indispensable avant de transformer ce succès chinois en ambition mondiale.
Un soleil artificiel construit aux Émirats arabes unis ?
02:25|C’est une annonce qui pourrait marquer un tournant dans l’histoire de l’énergie solaire à grande échelle. Dans le désert d’Abou Dhabi, un projet inédit ambitionne de produire de l’électricité solaire en continu, jour et nuit, toute l’année. Baptisée Khazna Solar PV, cette méga-centrale est développée conjointement par Masdar, Engie et Emirates Water and Electricity Company. Sa mise en service est prévue pour 2027.Le pari est audacieux : fournir 1,5 gigawatt d’électricité décarbonée 24 heures sur 24, sans intermittence. À ce jour, aucun site solaire au monde n’a atteint un tel niveau de production continue à cette échelle. Pour y parvenir, Khazna Solar PV repose sur une combinaison massive de production et de stockage. Le site accueillera environ trois millions de panneaux photovoltaïques, capables de générer jusqu’à 5,2 GW en pointe, couplés à un système de batteries de 19 gigawattheures. Il s’agira, lors de sa mise en service, du plus vaste dispositif de stockage par batteries jamais déployé pour une centrale solaire.Cette capacité de stockage est la clé du projet. L’énergie produite le jour sera emmagasinée, puis restituée la nuit ou lors des périodes de moindre ensoleillement. Une architecture pensée pour lever l’un des principaux freins historiques du solaire : son caractère intermittent. Selon les promoteurs du projet, l’installation pourra alimenter environ 160 000 foyers aux Émirats arabes unis et éviter chaque année l’émission de plus de 2,4 millions de tonnes de CO₂, l’équivalent du retrait de près de 470 000 véhicules thermiques de la circulation.Khazna Solar PV s’appuie également sur une forte couche numérique. Les panneaux seront équipés de systèmes de suivi solaire, ajustant automatiquement leur orientation. Des capteurs connectés et des outils d’analyse de données surveilleront en temps réel les performances, la météo et l’état des équipements. Des robots assureront le nettoyage des panneaux, un enjeu crucial dans un environnement désertique. Au-delà du projet lui-même, les partenaires veulent démontrer qu’un modèle solaire pilotable, fiable et reproductible est désormais possible. À l’heure où la demande mondiale d’électricité explose, notamment sous l’effet des centres de données et de l’intelligence artificielle, Khazna Solar PV pourrait bien servir de vitrine à une nouvelle génération d’infrastructures solaires capables de rivaliser avec les sources d’énergie pilotables traditionnelles.
L'énergie renouvelable est plus rentable que le fossile ?
01:56|Comme le rappelle le secrétaire général de Nations unies, la transition énergétique n’avance pas seulement à coups de discours écologiques : elle est d’abord guidée par l’argent. Et, pour une fois, les logiques financières et climatiques semblent s’aligner. En 2024, les énergies renouvelables ont franchi un cap décisif : elles sont devenues, tout simplement, plus rentables que les énergies fossiles.Les chiffres traduisent ce basculement. En un an, entre 2023 et 2024, la capacité mondiale de production d’énergies renouvelables a progressé de 20 %. Les investissements dans les énergies dites propres ont dépassé les 2 000 milliards de dollars, un record historique. Surtout, le différentiel de coûts s’est creusé : produire de l’électricité solaire coûte désormais 41 % moins cher que de recourir aux énergies fossiles. L’éolien fait encore mieux, avec un coût inférieur de 53 %. Résultat : 90 % des nouvelles capacités renouvelables installées dans le monde sont aujourd’hui plus compétitives que le charbon, le pétrole ou le gaz.Cette dynamique a déjà des effets visibles. Les énergies renouvelables assurent désormais environ un tiers de la production mondiale d’électricité. Un seuil symbolique, qui marque l’entrée dans ce que l’ONU qualifie de « nouvelle ère énergétique ». Loin d’être un pari risqué ou une contrainte réglementaire, le renouvelable est devenu un choix rationnel pour les investisseurs, soucieux de rendement et de stabilité à long terme.Selon les Nations unies, ce mouvement est désormais difficile à enrayer. « L’âge des énergies fossiles s’effondre un peu plus chaque jour », résume l’organisation. Sans nier les résistances politiques ni les tensions géopolitiques autour de l’énergie, l’ONU estime que la transition est engagée sur une trajectoire irréversible. Non pas parce que le monde serait soudainement devenu vertueux, mais parce que l’économie a changé de camp.
De l’hydrogène sous nos pieds pour 170 000 ans ?
02:46|Il n’existerait pas d’hydrogène à l’état naturel sur Terre : pendant longtemps, cette idée a fait figure de vérité scientifique. Et pourtant, les faits racontent une autre histoire. Dès le début du XXᵉ siècle, des émanations d’hydrogène ont été observées en France. À partir des années 1970, les chercheurs commencent à identifier, un peu partout sur la planète, des poches d’hydrogène naturel – désormais baptisé hydrogène blanc – depuis les fonds océaniques jusqu’à la croûte continentale. Longtemps restées marginales, ces découvertes prennent aujourd’hui une tout autre dimension.Car dans un monde engagé dans une course contre la montre pour décarboner ses économies, l’hydrogène naturel apparaît comme une ressource providentielle. L’hydrogène industriel actuel, dit « gris », est produit à partir de ressources fossiles et génère près de dix kilos de CO₂ pour chaque kilo d’hydrogène. Un hydrogène bas carbone pourrait, lui, transformer l’industrie, les transports, voire la production d’électricité. Résultat : la ruée est lancée. Des forages exploratoires sont en cours en Australie et aux États-Unis. En France, plusieurs permis ont été délivrés, notamment dans les Pyrénées-Atlantiques et les Landes. Plus spectaculaire encore : l’annonce récente d’un gisement estimé à 46 millions de tonnes d’hydrogène naturel dans le sous-sol de la Moselle. À titre de comparaison, la consommation mondiale d’hydrogène atteignait environ 90 millions de tonnes en 2022.C’est dans ce contexte que des chercheurs de l'University of Oxford, de l’University of Durham et de l’University of Toronto publient des travaux majeurs. Leur étude identifie les conditions géologiques nécessaires à la formation et à l’accumulation de l’hydrogène blanc. Et leur conclusion est vertigineuse : les environnements favorables seraient répandus à l’échelle mondiale, avec un potentiel capable de couvrir nos besoins énergétiques pendant… 170 000 ans. Les chercheurs expliquent désormais comment l’hydrogène se forme, migre à travers les roches et se retrouve piégé, mais aussi ce qui peut le faire disparaître, comme certains microbes qui s’en nourrissent. Ces avancées offrent une véritable feuille de route aux industriels de l’exploration. Tout n’est pas encore connu : l’efficacité exacte des réactions chimiques ou l’influence de l’histoire géologique restent à préciser. Mais l’essentiel est là. « Trouver de l’hydrogène, c’est comme réussir un soufflé », résume le géochimiste Chris Ballentine : il faut les bons ingrédients, au bon moment. Une recette que la science commence enfin à maîtriser, ouvrant la voie à une nouvelle ère énergétique.
L’IA beaucoup plus économe grâce à un nouvel isolant ?
02:33|Pour faire tourner l’intelligence artificielle, il ne suffit pas d’aligner des serveurs. Il faut surtout les refroidir. Et c’est là que le bât blesse. Selon un rapport de l’International Energy Agency, les centres de données ont consommé 415 térawattheures d’électricité dans le monde en 2024, soit quasiment l’équivalent de la consommation annuelle de la France. D’ici 2030, cette demande pourrait plus que doubler, pour atteindre 945 TWh, portée en grande partie par l’explosion des usages liés à l’IA. Une trajectoire énergivore, qui interroge la soutenabilité à long terme du modèle actuel.Face à ce mur énergétique, des chercheurs explorent des pistes radicalement nouvelles. À l’University of Houston, une équipe du département d’ingénierie biomoléculaire vient de mettre au point un matériau inédit pour les puces électroniques. Il s’agit d’un isolant bidimensionnel ultrafin, dit « Low-K », c’est-à-dire à faible constante diélectrique. Concrètement, ce matériau ne conduit pas l’électricité, mais laisse circuler les forces électrostatiques nécessaires au fonctionnement des circuits.Pourquoi est-ce crucial ? Parce que dans les puces actuelles, une grande partie de la chaleur provient justement des interférences électriques entre composants. En réduisant ces interactions parasites, cet isolant permet aux processeurs de fonctionner à haute vitesse tout en produisant beaucoup moins de chaleur. Résultat : des serveurs plus efficaces, qui nécessitent moins de refroidissement, donc moins d’électricité, sans sacrifier les performances. Pour fabriquer ces films Low-K, les chercheurs ont utilisé une technique appelée « polymérisation interfaciale synthétique », popularisée notamment par le chimiste Omar M. Yaghi, prix Nobel de chimie 2025. Le principe : assembler des briques moléculaires légères, comme le carbone, un peu à la manière d’un jeu de Lego à l’échelle atomique. On obtient ainsi des feuillets cristallins ultrarésistants, capables de supporter des températures élevées tout en maintenant une excellente stabilité électrique.Ces nouveaux isolants offrent un double avantage. D’un côté, ils améliorent la dissipation thermique dans les centres de données dédiés à l’IA. De l’autre, ils pourraient à terme bénéficier à toute l’électronique grand public, des smartphones aux ordinateurs. Si la technologie passe le cap de l’industrialisation, elle pourrait devenir l’un des leviers clés pour freiner l’explosion énergétique de l’intelligence artificielle — et rappeler que l’innovation matérielle reste aussi stratégique que les algorithmes.
Google va racheter un spécialiste des datacenters ?
02:34|À mesure que l’intelligence artificielle s’impose dans tous les services numériques, la facture énergétique de Google enfle à une vitesse vertigineuse. Recherche assistée par IA, modèles génératifs, services cloud : chaque requête mobilise des milliers de processeurs et alourdit un peu plus la consommation électrique du géant californien. Pour sécuriser cet appétit énergétique hors normes, Google change de stratégie : produire lui-même l’électricité dont ses centres de données ont besoin.C’est dans ce contexte qu’Alphabet, la maison mère de Google, négocie le rachat d’Intersect, une entreprise américaine spécialisée dans la colocalisation d’infrastructures énergétiques et numériques. L’opération pourrait atteindre 4,75 milliards de dollars, dettes comprises. Un investissement massif, mais stratégique. Car Intersect ne se contente pas de bâtir des data centers classiques : son modèle consiste à installer directement les serveurs à proximité immédiate de centrales électriques dédiées. Résultat : des capacités de calcul qui sortent de terre sans peser sur les réseaux publics déjà saturés.Intersect revendique aujourd’hui près de 15 milliards de dollars d’actifs en exploitation ou en construction aux États-Unis. Google, déjà actionnaire minoritaire, souhaite désormais prendre le contrôle total de l’entreprise. Son fondateur, Sheldon Kimber, resterait aux commandes, mais la société deviendrait un pilier de la stratégie énergétique d’Alphabet. Un premier projet emblématique est déjà en cours dans le comté de Haskell, au Texas : une centrale électrique et un centre de données y sont construits côte à côte pour alimenter directement les services d’IA du groupe. L’enjeu est colossal. Selon plusieurs autorités de régulation, chaque interaction avec des outils comme Gemini entraîne une consommation bien supérieure à celle d’une recherche classique. Sundar Pichai, PDG d’Alphabet, estime que ce modèle permettra à Google de gagner en agilité en développant simultanément production électrique et capacités de calcul. Le groupe ne mise pas uniquement sur le gaz : géothermie de nouvelle génération, batteries géantes pour le stockage longue durée et gaz couplé à la capture de carbone font partie de la feuille de route.Ironie du sort, Google utilise aussi ses propres algorithmes d’IA pour accélérer le raccordement des nouvelles centrales au réseau : l’intelligence artificielle aide ainsi à bâtir les infrastructures énergétiques qui l’alimenteront demain. Si le rachat obtient le feu vert des régulateurs, il devrait être finalisé au premier semestre 2026.
L'IA pollue autant que la ville de New York ?
02:43|L’addition environnementale de l’intelligence artificielle commence enfin à sortir du brouillard. Et elle est salée. Une étude menée par Alex de Vries-Gao, doctorant à l’université d’Amsterdam et fondateur de Digiconomist, met en lumière un angle mort majeur : l’empreinte carbone et hydrique des systèmes d’IA reste largement sous-évaluée, faute de données publiques et détaillées de la part des géants du numérique.Selon ses estimations, les systèmes d’IA pourraient émettre entre 32,6 et 79,7 millions de tonnes de CO₂ dès 2025. Un ordre de grandeur comparable aux émissions annuelles d’une grande métropole comme New York, ou d’un pays européen de taille moyenne. La consommation d’eau est tout aussi vertigineuse : entre 312 et 764 milliards de litres par an, soit l’équivalent de la consommation mondiale d’eau en bouteille. En cause, une explosion de la puissance électrique mobilisée par l’IA : 23 gigawatts attendus fin 2025, contre 9,4 GW seulement un an plus tôt.Ces chiffres s’inscrivent dans une tendance déjà pointée par Agence internationale de l'énergie, qui estime que l’IA représentait 15 % de la consommation électrique des centres de données en 2024, une part susceptible d’atteindre près de la moitié à moyen terme. Mais mesurer précisément cet impact relève aujourd’hui du casse-tête. Aucun acteur majeur — Google, Microsoft, Amazon ou Apple — ne distingue clairement, dans ses rapports environnementaux, ce qui relève spécifiquement des charges de travail liées à l’IA. Meta fait figure d’exception partielle en publiant sa consommation d’eau indirecte, liée à l’électricité achetée : 3,92 litres par kilowattheure, soit quatre fois plus que les estimations de référence. À l’inverse, Google assume ne pas communiquer ces données, arguant d’un manque de contrôle sur la production électrique — une position que l’étude juge révélatrice d’un déficit de transparence.Face à ce flou, Alex de Vries-Gao appelle à des règles plus contraignantes : obligation de reporting détaillé, publication de métriques hydriques et carbone spécifiques à l’IA, et création d’un indice carbone des modèles. Certaines initiatives émergent, comme celle de Mistral, qui a publié une analyse environnementale détaillée de l’un de ses modèles et invite ses concurrents à faire de même. Sans cette transparence généralisée, prévient le chercheur, impossible d’évaluer l’efficacité réelle des stratégies de réduction d’impact.