Talking Techniques

Share

Revitalizing the western blot

Season 2, Ep. 15

Love it or hate it, western blotting forms the bedrock of countless studies across numerous disciplines. Explore its history, development and applications in this episode all about the marmite of life science techniques.


Guiding me through the hand wringing, hair follicle destroying history and process of western blotting, and hopefully explaining the beauty and potential of the technique - is Kenneth Oh, Senior Project Manager at Bio-Rad Laboratories.


Kenneth reveals some of the latest developments in western blotting. Revealing how researchers are now able to validate the success of each stage of a western blot and work with smaller samples, Kenneth provides key tips for ensuring each of your western blots is a triumph.


Contents:

Intro: 00:00-01:15

History of western blotting: 01:15-3:50

What makes western blotting so tricky? 03:50-05:30

Stepwise optimization: 05:30-06:50

Stain-free western blotting: 06:50-08:50

The different variants of western blotting: 08:50-10:20

The right blot for the right application: 10:20-11:30

The most exciting developments in western bloting:11:30-13:35

New horizons for western blotting: 13:35-15:25

The impact of multiplex-western blotting: 15:25-16:30

Tips for best practice: 16:30-18:10

The future of western blotting: 18:10-20:30

Yearning for automation: 20:30-21:30

More Episodes

10/13/2021

Producing challenging proteins in the golden age of protein engineering

Season 2, Ep. 17
In this episode, we roam the world of recombinant proteins and their production, discussing the challenges of their production, and recent evolutions in protein engineering that have brought the field into a golden era of innovation.I'm joined by recombinant protein engineering expert Yuning Chen, R&D Manager at Sino Biological, who discusses the key applications of recombinant proteins, the aspects of certain products that make them difficult to produce and how these difficulties can be overcome.Yuning also reveals how the manipulation of antibodies has been essential to multiple aspects of our response to the COVID-19 pandemic.After a review of the recent evolutions in protein engineering, from cell-free systems to automation, Yuning describes his vision for the future of the field and reveals his support for the Terminator-style uprising that he believes could revolutionize it.ContentsThe production of recombinant proteins: 00:48-02:11The key applications of recombinant proteins: 02:11-03:27What makes some proteins difficult to produce? 03:27-04:41Overcoming these challenges:04:40-5:40Manipulating antibodies to take part in multiple aspects of pandemic response: 05:40-08:00The most exciting applications of recombinant proteins: 08:00-09:50Developments in high throughput and automated protein engineering: 09:50-11:00Cell-free protein engineering: 11:00-12:40The benefits of cell-free systems: 12:40-13:40What is next for recombinant protein production? 13:40-16:15The dream of automation for the recombinant protein production: 16:15-18:50
9/21/2021

The evolution of PCR: From q to dd and beyond

Season 2, Ep. 16
PCR has evolved rapidly over the last few years, an evolution that has been dramatically accelerated by the COVID-19 pandemic. New technologies and approaches have been brought to the fore and the full range of applications for which this technique can be applied have been highlighted, from diagnostics to basic disease research and immunology.This episode explores this evolution, looking at how challenges presented by the pandemic forced the hand of researchers to think outside the box and build on lesser-known PCR technologies. Here, Eddy van Collenburg, Market Development Specialistat Bio-Rad (CA, USA), provides his insight into how ddPCR rose to prevalence during this time and explains how the technology is being used to enable trade, detect new variants and is being used outside of the pandemic.Discover the key role that ddPCR can play in gene therapy research, liquid biopsies, cancer research, single-cell studies and more, in this fascinating overview of the development of PCR and where the technique can go in the future.Contents:Introduction: 00:00-01:30Why was qPCR established as the gold standard for detection?01:30-03:40Limitations of qPCR during the pandemic: 03:40-05:05New varieties of PCR for faster results: 05:05-05:40New varieties for more accurate results: 05:40-06:45ddPCR working principle and advantages: 06:45-09:00Nonclinical ddPCR applications for COVID-19: 09:00-10:45ddPCR in variant detection: 10:45-12:05ddPCR in gene therapy research: 11:05-12:30Liquid biopsy and cancer research: 12:30-15:20Combining ddPCR with NGS in research: 15:20-16:15What are some of the applications of ddPCR that you find most exciting? 16:15-17:10Applications of ddPCR in single-cell studies: 17:10-21:00Improvements in ddPCR: 21:00-21:45Tips for best practice when using ddPCR: 21:45-22:50What would you ask for to improve ddPCR? 21:50-24:20
8/27/2021

Molecular therapeutics: how far have we come and what's on the horizon?

Season 2, Ep. 14
Uncover the history of molecular therapeutics, the staggering current applications and developments of these therapeutics and what their future could hold, in this episode of Talking Techniques.To explore the field of molecular therapeutics and provide an insight into their production, is Aaron Clauson, Product Manager at Zymo research. First, we cover the ins and outs of targeting the therapies and how to select the correct type of molecular therapeutic to begin developing a drug for a specific disease, before looking at some of the setbacks and safety errors that have occurred during the development of molecular therapeutics and how researchers have learned from these tragic events.Aaron also highlights the vital role of plasmids in almost all molecular therapeutic development, detailing the importance of keeping plasmid solutions and transfections free of endotoxins, revealing key solutions for avoiding these contaminants.Listen today to get all you need to know about molecular therapeutics, from their inception to their most exciting examples and how we can better communicate their benefits to the public in order to avoid mistrust and confusion - as has occurred during the COVID-19 pandemic.Contents:What counts as a molecular therapeutic? 01:45-02:40Well known molecular therapeutics: 02:40-05:00What can molecular therapeutics achieve that synthetic chemicals can’t? 05:00-05:55Targeting molecular therapeutics and picking the right type of therapeutic: 05:55-08:25Selecting the appropriate molecular therapeutic: 08:35-11:00Setbacks and safety concerns in gene therapies: 11:00-15:45Preventing off-target effects in gene therapies: 15:45-17:35Challenges in the development of molecular therapeutics: 17:35-19:05Plasmids in molecular therapeutic development: 19:05-23:55Avoiding endotoxins: 23:55-27:45What fields do you find most exciting? 27:45-28:50Better communication of gene therapies to the public: 28:50-32:00 Improving molecular therapeutic development: 32:00-37:10