Talking Techniques


The gut–brain axis and addiction

Season 3, Ep. 12
In this special episode of Talking Techniques, brought to you from the Federation of European Neuroscience Societies Forum (FENS; 9th–13th July 2022), an expert panel discuss their research into the relationship between the gut–brain axis and addiction.The panel features Benjamin Boutrel (Lausanne University Hospital; Switzerland), Lorenzo Leggio (NIH Intramural Research Program; MD, USA) and Nathalie Delzenne (University of Louvain; Louvain-la-Neuve, Belgium), who discuss their current research into the role of the microbiota in alcohol addiction, if this work could be translated into the clinic, and if similar processes are at play in other addictions, such as food and cocaine. The discussion also features an audience Q&A, which explores the microbial relationship between mother and fetus, and social factors in addiction.Contents:Introduction: 00:00–01:35Introduction to panelists: 01:35–03:40Techniques being used to investigate the relationship between the gut and addiction: 03:40–06:55Translating this research to the clinic: 06:55–11:40Parallels between alcohol addiction and other addictions, such as food, cocaine and tobacco: 11:40–17:05Microorganisms as drivers of behavior: 17:05–18:30The hot topic of gut health: 18:30–20:30Future directions for the research, including microbiota transfers, precision medicine and avoiding alcohol dependence: 20:30–24:35Audience Q&A – microbial elements between mother and fetus, and social factors in addiction: 24:35–29:15

3D cell cultures: the latest developments, applications and regulations in the field

Season 3, Ep. 11
In this episode, supported by BrandTech, returning guest Rob Vries, CEO of HUB organoids (Utrecht, The Netherlands), fills us in on the advancement of 3D cell cultures and organoids over the last 2 years, starting off by documenting how the pandemic impacted their development and uptake.We also discuss how the recent FDA Modernization Act, removing the requirement for drug candidates to be tested on animals, has impacted the drive for improved models, the key techniques available to analyze them and what still needs to change for 3D cell cultures to fully replace animal models in the lab.Listen today to find out which resources can help you begin to work with 3D cell cultures, their most exciting recent applications and how issues of reproducibility are currently being addressed in the field.Contents:Intro: 00:00-00:50How COVID-19 impacted the uptake and development of 3D cell cultures: 00:50-02:05Key developments in 3D cell culture technology in the last 2 years: 02:05-03:00Intestinal organoids and the investigation of irritable bowel syndrome: 03:00-5:50Evaluating assembloids: 05:50-08:35Complexity vs clinical relevance: 08:35-10:45The impact of 3D cell cultures in precision medicine in cancer: 10:45-12:40The impact of the FDA’s Modernization Act on 3D cell culture uptake: 12:40-14:45What needs to improve in organoid technologies to fully replace animal models? 14:45-16:10Changing inbuilt reliance on animal models: 16:10-18:30Key techniques to analyze organoids: 18:30-19:50Developments in imaging technology that have improved the analysis of organoids: 19:50-21:15Current challenges in 3D cell culture implementation and reproducibility: 21:15-24:15Improving access to 3D cell cultures: 24:15-25:55Resources to help people implement organoids into their work: 25:55-27:15Searching for the holy grail in 3D cell cultures: 27:15-28:00

rAAVs, host-cell contamination and ddPCR

Season 3, Ep. 10
In this episode of Talking Techniques, supported by Bio-Rad, we discuss a key component of many gene therapies: recombinant adeno-associated viruses (rAAVs) and their production. These viruses act as efficient, accurate delivery vesicles for the gene therapy’s plasmid.Speaking to Associate Director of Biopharma Product Marketing at Bio-Rad Laboratories, Mark White, we take a look at the different expression systems used for their production and compare their advantages, before looking at some of the challenges involved in the production rAAVs, such as host-cell contamination.Discover the tools that can help minimize host-cell contamination and differentiate between nuclease resistant and nuclease reactive contaminant DNA and find out about some of the most exciting developments in rAAV technologies. Contents:The role of rAAVs in gene therapies: 00:40-02:15The production of rAAVs and gene therapies: 02:15-03:30Why are HEK cells so popular for cell therapy production? 03:30-05:45HEK vs SF9 Insect cell expression systems: 05:45-06:45Challenges in cell therapy expression systems: 06:45-08:05Host DNA contamination: 08:05-10:30The risks of host DNA contamination: 10:30-12:45Key techniques to minimize host DNA contamination: 12:45-14:40The advantages of ddPCR in gene therapy production: 14:40-17:50Distinguishing between nuclease resistant and nuclease reactive host cell DNA: 17:50-19:10The most exciting developments in rAAV technology: 19:10-20:20What is one thing you would ask for to improve rAAV and gene therapy development 20:20-26:38

HPV, epigenetics and cancer: sequencing for new insights and to correct healthcare inequality

Season 3, Ep. 9
In many regions of the world, HPV and its association with cervical cancer is a well-known but rarely considered issue, after the rollout of the HPV vaccine in the late 2000s. However, while this rollout significantly impacted cervical cancer rates where it was implemented, it was not universal and in many areas of the world HPV-induced cervical cancer remains a critical issue.Cervical cancer is the leading cause of death for people with a cervix living in poverty in low-resource regions and on the continent of Africa, it is estimated that in 2020 as many people with a cervix died of cervical cancer as COVID-19.In this episode of Talking techniques, supported by Oxford Nanopore, Senior Investigator Michael Dean and Post-baccalaureate Fellow Nicole Rossi, from the NIH’s National Cancer Institute (MD, USA), discuss their research into the relationship between HPV and cervical cancer. Expounding on the points mentioned above, they reveal the tremendous insights into cancer and immunology still to be gained, document the key tools used in their studies and explain how their work can be translated into more effective immunotherapies and treatments for cervical cancer.ContentsIntroduction: 00:00-01:40How big an issue does HPV present to the world? 01:40-03:30HPV’s association with cancer: 03:30-05:15Why does HPV target DNA repair mechanisms? 05:15-06:00Key goals of research into HPV: 06:00-07:15Challenges of HPV research: 07:15- 08:20Solutions available to deal with these challenges: 08:20-09:30The most exciting discoveries in HPV using long-read sequencing: 09:30-11:00HPV16- the most oncogenic variant: 11:00-11:40Translating research into clinical results for HPV: 11:40-12:45How effective is the current HPV vaccine? 12:45-13:30What would you ask for to improve research into HPV and cancer? 13:30-14:30How big an issue is vaccine rejection? 14:30-15:40Final thoughts: 15:40-17:00

Liquid biopsy and cfNAs: driving forward diagnostics and disease research

Season 3, Ep. 7
The key diagnostic and prognostic information locked away in cell-free nucleic acids (cfNAs) has become increasingly accessible due to developments in genetic and epigenetic profiling techniques. These advances have engendered the rise of liquid biopsy techniques, which capture and analyze cfNAs from samples such as blood, saliva, urine and feces, in diagnostics and basic disease research.However, challenges remain in the detection and analysis of these nucleic acid fragments, in part due to their low abundance and fragile nature. In this episode, Ayla Maunighan-Peter, Epigenetics Product Specialist at Zymo research (CA, USA), details the utility of these molecules, the challenges associated with their development and implementation of liquid biopsies and their use in both basic research and diagnostic spaces.For an insight into how cfNAs can be used to identify novel drug targets, impact diagnostics development and be used to help soothe the organ shortage crisis, listen today!Contents:Intro: 00:00-00:40What are cfNAs? 1:50-02:35The role of cfNAs in Liquid biopsy: 02:35-04:25Markers analyzed in cfNAs: 04:25-06:10Epigenetic analysis of cfNAs: 06:05-07:55Techniques for epigenetic analysis of cfNAs: 08:00-08:55Introducing fragmentomics: 08:55-11:05Challenges in the development of liquid biopsy: 11:05-14:40How is the field trying to adapt to these challenges? 14:40-16:10Applications of cfNAs in basic research: 16:10-17:30The most exciting findings concerning the role of cfNAs in disease: 17:30-20:05One thing to improve our understanding and use of cfNAs: 20:05-21:10Conclusions: 21:15-22:15 

The epigenetic clock

Season 3, Ep. 5
In this episode, supported by Zymo Research, we discuss the epigenetic clock: what is it? How are researchers using it and what are some of the key tools available to study it? Elucidating the link between epigenetics and aging is Keith Booher, Director of Services at Zymo research including aging and epigenetics research services. Keith reveals how our behaviors and environment, such as diet, exercise and air quality, can impact our epigenetics and the impact that the epigenetic clock has played in the development of new therapeutics.Find out how you can reverse your biological age, the implications of aging populations the latest developments in epigenetic research and more in this episode of Talking Techniques. Contents: Introduction: 00:00-02:15The issue with population aging: 02:15-03:30Introducing epigenetics:  03:30-04:20The link between epigenetics and aging: 04:20-05:50The impact of exercise on epigenetics: 05:50-06:40The epigenetic clock: 06:40-08:00What can the epigenetic clock tell you about someone’s health: 08:00-10:05Can you reverse the epigenetic clock? 10:05-12:00The latest experiments in epigenetics and aging research: 12:00-14:10Finetuning exercise using the epigenetic clock: 14:10-15:30Challenges in epigenetics and aging research: 15:30-17:00Key technologies in epigenetics and aging research: 17:00-18:05Where are the main developments coming from? 18:05-19:30Aging and lobsters: 19:30-20:45How will the field develop in the next 5 years? 20:45-22:00What would you ask for to improve your understanding of the epigenetic clock? 22:00-23:00The most exciting aspects of aging intervention: 23:00-24:00