Partager

Choses à Savoir SCIENCES
Pourquoi Joseph Vallot est-il un scientifique hors norme ?
Quand on évoque les grands explorateurs des cimes, le nom de Joseph Vallot ne revient pas toujours en premier. Et pourtant, cet homme du XIXe siècle fut un pionnier dans un domaine où peu osaient s’aventurer : la science en haute montagne. Naturaliste, géographe, alpiniste, astronome et même météorologue, Joseph Vallot incarne une figure exceptionnelle de la science pluridisciplinaire, menée au sommet. Littéralement.
Né en 1854 à Lodève, dans l’Hérault, Vallot est fasciné dès son plus jeune âge par les montagnes. Mais au lieu de s’en contenter comme terrain de jeu sportif, il les considère comme un laboratoire à ciel ouvert. Son obsession : comprendre le fonctionnement de la nature dans les conditions extrêmes de l’altitude. Une idée audacieuse à une époque où la médecine, la physique ou la biologie ne s’exerçaient qu’en milieu tempéré.
Il va donc réaliser un exploit scientifique et logistique inédit : installer un observatoire permanent sur le Mont Blanc, à plus de 4.300 mètres d’altitude. En 1890, après de multiples ascensions et de minutieux repérages, il fait bâtir le fameux Observatoire Vallot. Transporté à dos d’hommes, de mules et de traîneaux, le matériel est hissé à travers la neige et les crevasses. Une folie, pour certains. Une révolution, pour l’histoire de la science.
À cet observatoire, Vallot passe de longues semaines, parfois seul, pour mener des études sur la respiration humaine, la composition de l’air, la météorologie, la glaciologie, et même l’astronomie. Il observe comment l’organisme s’adapte à l’altitude, mesure la baisse de la pression atmosphérique, étudie les mouvements des glaciers… et note tout avec rigueur. Ses carnets sont de véritables trésors scientifiques.
Mais ce n’est pas tout : il invente aussi du matériel pour la haute montagne, conçoit des tentes adaptées aux expéditions, et développe des méthodes de relevés topographiques en altitude. Sa passion ne s’arrête jamais.
Joseph Vallot était un esprit universel. À une époque où la spécialisation scientifique devenait la norme, lui choisissait la transversalité. Sa contribution majeure ? Avoir démontré que la haute montagne n’est pas un désert scientifique, mais un espace d’observation privilégié pour comprendre notre planète.
Il meurt en 1925, mais son héritage perdure : son observatoire existe encore, utilisé aujourd’hui par des chercheurs du monde entier. Joseph Vallot, en somme, a hissé la science à des sommets… au sens propre comme au figuré.
More episodes
View all episodes

Pourquoi les objets se brisent-ils de la même façon ?
02:42|Lorsqu’un objet se brise, notre impression immédiate est celle du chaos : des morceaux de tailles variées, projetés dans toutes les directions, sans logique apparente. Pourtant, qu’il s’agisse d’un verre qui éclate, d’un sucre que l’on écrase ou d’une bulle de savon qui disparaît, ces phénomènes obéissent à des règles étonnamment similaires. C’est ce que révèle une avancée récente en physique : la fragmentation suit une loi universelle.Pour comprendre cela, il faut d’abord s’intéresser à la notion de contraintes internes. Tous les matériaux, même les plus solides, contiennent des défauts microscopiques : fissures invisibles, zones plus fragiles, irrégularités dans leur structure. Lorsqu’une force est appliquée — choc, pression, tension — l’énergie se propage dans l’objet sous forme d’ondes mécaniques. Ces ondes se concentrent naturellement autour des défauts, où la rupture commence.Ce qui est remarquable, c’est que la façon dont l’énergie se répartit dans le matériau détermine directement la taille et le nombre des fragments produits. Un physicien français a récemment proposé une équation capable de décrire cette répartition, quel que soit l’objet étudié. Verre, céramique, sucre, métal mince ou même bulles de liquide : tous suivent la même courbe statistique.Cette courbe montre que les petits fragments sont toujours très nombreux, tandis que les gros morceaux sont beaucoup plus rares. Autrement dit, il existe une relation mathématique stable entre la taille d’un fragment et sa probabilité d’apparition. Ce type de relation est appelé une loi d’échelle : on retrouve la même forme de distribution, que l’on casse un grain de sucre ou un bloc de roche.Pourquoi une telle universalité ? Parce que, au moment de la rupture, le matériau n’« hésite » pas. Dès que la contrainte dépasse un seuil critique, un réseau de fissures se propage à grande vitesse, se ramifie et se croise. Ce processus de propagation est gouverné par des équations fondamentales de la mécanique et de la physique des matériaux, indépendantes de la nature précise de l’objet.Même une bulle de savon suit cette logique. Lorsqu’elle éclate, la fine membrane liquide se déchire en multiples filaments, qui se fragmentent à leur tour en microgouttelettes. Là encore, la distribution des tailles des gouttes correspond à la même loi que celle observée pour des solides.Cette découverte a des implications concrètes. Elle permet d’améliorer la conception de matériaux résistants aux chocs, de mieux comprendre l’érosion des roches, ou encore d’optimiser des procédés industriels comme le broyage et le concassage.En résumé, si un objet semble se briser « toujours de la même façon », ce n’est pas par hasard. Derrière le désordre visible se cache un ordre mathématique profond : une loi universelle de la fragmentation, qui révèle que le chaos, en physique, est souvent bien plus organisé qu’il n’y paraît.
Où Dieu se trouve-t-il dans l'Univers ?
02:09|La question « Où se trouve Dieu dans l’Univers ? » traverse l’histoire humaine depuis des millénaires. Religieuse, philosophique, mais aussi scientifique, elle touche à notre besoin profond de situer l’infini dans un cadre compréhensible. Récemment, un ancien physicien de Harvard, le Dr Michael Guillén, a relancé le débat en avançant une idée spectaculaire : Dieu pourrait avoir une localisation précise dans l’espace.Selon lui, des calculs issus de modèles cosmologiques conduiraient à situer Dieu à environ 439 milliards de milliards de kilomètres de la Terre, une distance vertigineuse qui dépasse largement notre capacité d’imagination. L’argument repose sur une réflexion autour des limites observables de l’Univers et de l’idée qu’au-delà de ce que nous pouvons mesurer, il existerait une frontière ultime, assimilée à un point d’origine ou de transcendance.Cette proposition intrigue, car elle semble donner une « adresse » à une entité traditionnellement décrite comme immatérielle, éternelle et omniprésente. Or, c’est précisément là que le problème apparaît.Du point de vue de la physique moderne, l’Univers n’est pas une structure fixe avec un centre clairement défini. Depuis les travaux d’Edwin Hubble au XXᵉ siècle, nous savons que l’Univers est en expansion : toutes les galaxies s’éloignent les unes des autres. Mais cette expansion ne part pas d’un point central comme une explosion classique. Chaque région de l’espace s’étire, ce qui signifie qu’il n’existe pas de « milieu » absolu de l’Univers.Autrement dit, parler d’un endroit précis où se situerait Dieu pose une difficulté majeure : l’espace lui-même est en mouvement, et ses dimensions évoluent constamment. Une distance calculée aujourd’hui n’aurait donc pas de valeur fixe dans le temps cosmique.De plus, la science ne peut étudier que ce qui est mesurable. Les instruments observent des particules, des champs, de l’énergie. Dieu, par définition théologique, échappe à ces catégories. Le placer quelque part dans l’espace revient à le transformer en objet physique, ce qui contredit la conception dominante des grandes religions, pour lesquelles Dieu est hors de l’espace et du temps.L’hypothèse de Michael Guillén peut alors être comprise moins comme une affirmation scientifique stricte que comme une métaphore : une tentative de traduire en langage mathématique une idée spirituelle, celle d’un principe premier situé au-delà du monde observable.Finalement, la science répond surtout à une chose : elle ne sait pas localiser Dieu. Elle peut décrire l’âge de l’Univers, sa taille approximative, ses lois fondamentales, mais elle s’arrête aux portes du sens ultime.La question « Où est Dieu ? » demeure donc, pour l’instant, du domaine de la foi et de la philosophie. Peut-être que, plutôt que d’être quelque part dans l’Univers, Dieu serait — pour ceux qui y croient — ce qui rend l’Univers possible.
Pourquoi les neurones pourraient servir de carte d'identité ?
02:47|Et si, demain, votre mot de passe le plus sûr n’était plus votre visage, votre doigt… mais votre cerveau ? Cette idée, qui relevait encore récemment de la science-fiction, est en train de devenir une réalité grâce à un nouveau champ de recherche : l’identification neuronale.L’identification neuronale repose sur un principe simple en apparence : chaque cerveau produit une activité électrique unique. Lorsque nous pensons, regardons une image ou réagissons à un stimulus, des milliards de neurones s’activent selon des schémas spécifiques. Or, ces schémas varient d’un individu à l’autre, un peu comme une signature invisible. L’objectif est donc de transformer cette activité cérébrale en identifiant biométrique.Concrètement, cette technologie utilise des capteurs capables d’enregistrer des signaux cérébraux, souvent via des électroencéphalogrammes, ou EEG. L’utilisateur porte un casque ou un dispositif léger qui capte les ondes émises par son cerveau pendant qu’il effectue une tâche simple : regarder une forme, écouter un son, ou se concentrer sur une image. Ces données sont ensuite analysées par des algorithmes d’intelligence artificielle, qui extraient des caractéristiques stables propres à chaque personne.C’est précisément l’approche développée par la start-up française Yneuro avec son système Neuro ID, présenté comme la première solution d’authentification biométrique fondée sur l’activité cérébrale. L’ambition est claire : proposer une alternative aux méthodes actuelles comme les empreintes digitales, la reconnaissance faciale ou l’iris.Pourquoi chercher à dépasser ces technologies déjà très répandues ? Parce qu’elles ont des failles. Un visage peut être copié à partir d’une photo, une empreinte digitale peut être reproduite, et les bases de données biométriques peuvent être piratées. Le cerveau, lui, est beaucoup plus difficile à imiter. Les signaux neuronaux sont dynamiques, complexes, et quasiment impossibles à deviner sans être physiquement la personne concernée.Autre avantage majeur : l’identification neuronale pourrait permettre une authentification dite « vivante ». Autrement dit, le système ne vérifie pas seulement une caractéristique statique, mais une activité cérébrale en temps réel, ce qui réduit fortement les risques d’usurpation.Pour autant, cette technologie ne rendra pas immédiatement obsolètes les méthodes actuelles. Les capteurs doivent encore être miniaturisés, rendus confortables et peu coûteux. Des questions éthiques majeures se posent aussi : que devient la confidentialité des données cérébrales ? Qui les stocke ? Et dans quel but ?L’identification neuronale ouvre donc une nouvelle ère de la biométrie. Une ère fascinante, prometteuse… mais qui exigera des garde-fous solides. Car pour la première fois, ce n’est plus notre corps que l’on utilise comme clé d’accès, mais l’intimité même de notre activité mentale.
Quel est le premier médicament conçu par l'IA ?
02:14|Depuis quelques années, on nous promet que l’intelligence artificielle va révolutionner la médecine. Mais jusqu’ici, l’IA restait surtout un outil : pour analyser des images médicales, repérer des cancers, lire des dossiers… Aujourd’hui, un cap est en train d’être franchi : un médicament conçu grâce à de l’IA pourrait devenir le premier traitement commercialisé issu d’un processus de découverte “end-to-end” par IA.Son nom : rentosertib.Rentosertib, auparavant connu sous le code ISM001-055, est développé par la société de biotechnologie Insilico Medicine. Il cible une maladie grave et encore largement incurable : la fibrose pulmonaire idiopathique, ou IPF. C’est une pathologie où le tissu des poumons se transforme progressivement en “cicatrice”, ce qui réduit l’oxygénation et conduit souvent à une insuffisance respiratoire. Les traitements actuels ne guérissent pas : ils ralentissent simplement la progression.Ce qui rend rentosertib unique, c’est son histoire. D’après les informations publiées ces dernières années, l’IA n’a pas servi uniquement à “accélérer” des étapes. Elle aurait été utilisée pour identifier une cible biologique prometteuse (une protéine impliquée dans la maladie), puis pour concevoir chimiquement une molécule capable de l’inhiber. Ici, la cible est une enzyme appelée TNIK. L’algorithme a analysé des masses de données scientifiques, repéré un signal biologique cohérent, puis généré et optimisé des structures moléculaires jusqu’à obtenir un candidat médicament.Rentosertib a déjà franchi des étapes cruciales : des essais initiaux chez l’humain ont montré un profil de sécurité acceptable, puis une étude de phase 2a a donné des signaux encourageants sur l’amélioration ou la stabilisation de certains indicateurs respiratoires après quelques semaines de traitement.Et maintenant, l’enjeu est énorme : la phase 3. C’est la dernière marche avant une éventuelle autorisation de mise sur le marché : un essai long, sur beaucoup de patients, comparant le médicament à un placebo ou au traitement standard. C’est aussi l’étape où la majorité des molécules échouent.Si rentosertib réussit cette phase, il pourrait être le premier médicament réellement “conçu par IA” à arriver en pharmacie — potentiellement avant 2030. Ce ne serait pas seulement une victoire médicale : ce serait la preuve que l’IA peut, concrètement, inventer des traitements plus vite… et peut-être mieux, contre des maladies aujourd’hui sans vraie solution.
Qu'est-ce que l'épigénétique ?
02:20|L’épigénétique désigne l’ensemble des mécanismes biologiques qui modifient l’activité de nos gènes… sans changer la séquence de notre ADN. Dit autrement : ton ADN est comme un texte. L’épigénétique, c’est tout ce qui agit comme des post-it, des surlignages ou des interrupteurs pour dire : “ce gène-là, on l’allume”, “celui-là, on le met en veille”.C’est une révolution dans la façon de comprendre le vivant, parce qu’elle montre que gènes et environnement dialoguent en permanence. Nos gènes ne sont pas un destin figé : ils peuvent être exprimés différemment selon notre alimentation, notre stress, notre sommeil, nos toxines, notre activité physique… et même parfois selon ce qu’ont vécu nos parents.Les mécanismes principaux sont au nombre de trois.D’abord, la méthylation de l’ADN : de petits groupes chimiques, appelés “méthyles”, viennent se fixer sur l’ADN et empêchent certains gènes de s’exprimer. C’est comme coller un scotch sur un paragraphe : il est toujours là, mais on ne le lit plus.Ensuite, les modifications des histones. L’ADN n’est pas déroulé en ligne droite : il est enroulé autour de protéines, les histones. Selon la façon dont ces histones sont modifiées, l’ADN devient plus ou moins “accessible”. Si l’ADN est serré, les gènes sont silencieux. Si l’ADN est plus relâché, ils sont actifs.Enfin, il existe des ARN non codants, de petites molécules qui ne fabriquent pas de protéines mais servent à réguler l’expression des gènes, comme des chefs d’orchestre invisibles.Un exemple spectaculaire : les abeilles. Toutes les larves ont le même ADN, mais si une larve est nourrie avec de la gelée royale, elle devient une reine. Sinon, elle devient une ouvrière. Ce n’est pas génétique : c’est épigénétique.Autre exemple célèbre : l’étude de la famine hollandaise (1944-45). Les enfants exposés in utero à cette période de sous-nutrition ont montré, des décennies plus tard, un risque accru de troubles métaboliques. On a observé chez eux des différences épigénétiques sur des gènes liés à la croissance et au métabolisme.C’est tout l’enjeu : l’épigénétique explique pourquoi des jumeaux identiques peuvent vieillir différemment ou développer des maladies différentes. Elle joue aussi un rôle clé dans le cancer, où certains gènes protecteurs sont “éteints” à tort.Conclusion : l’épigénétique, c’est la science qui montre comment l’environnement écrit, au-dessus de nos gènes, une seconde couche d’information. Une couche réversible… mais parfois durable.
Comment répondre aux gens qui inventent n’importe quoi ?
02:21|Le rasoir de Hitchens est une règle de pensée simple, tranchante… et terriblement efficace. Elle tient en une phrase :« Ce qui est affirmé sans preuve peut être rejeté sans preuve. »Cette maxime est attribuée à Christopher Hitchens, essayiste et polémiste anglo-américain connu pour son style incisif, son goût du débat et son exigence intellectuelle. On parle de “rasoir” par analogie avec d’autres outils logiques comme le rasoir d’Occam : une règle qui “rase” les explications inutiles pour ne garder que l’essentiel. Ici, Hitchens ne rase pas les hypothèses trop compliquées : il rase les affirmations gratuites.Une arme contre les croyances infalsifiablesLe rasoir de Hitchens repose sur une idée fondamentale en rationalité : la charge de la preuve appartient à celui qui affirme. Si quelqu’un prétend quelque chose, c’est à lui de fournir des éléments solides pour le soutenir. Ce n’est pas à l’interlocuteur de démontrer que c’est faux.Et ça change tout. Car dans beaucoup de discussions, surtout sur Internet, la logique est inversée : une personne lance une théorie invérifiable — par exemple “les élites contrôlent tout”, “on nous ment”, “on a caché des preuves” — puis exige que les autres prouvent que c’est faux. Mais si l’affirmation ne repose sur rien de sérieux, on n’a pas à perdre son temps à la réfuter point par point : on peut la rejeter immédiatement.Exemple concretImagine quelqu’un qui dit :“Un esprit invisible hante mon appartement.”S’il n’y a aucune preuve, aucun indice, aucune observation vérifiable, le rasoir de Hitchens permet de répondre :“OK, mais je n’ai aucune raison d’y croire.”Pas besoin d’enquêter pendant trois semaines pour “prouver” qu’il n’y a pas de fantôme.Attention : ce n’est pas du cynismeLe rasoir de Hitchens ne dit pas : “tout est faux jusqu’à preuve du contraire”. Il dit : “je n’accepte pas une affirmation sans base”. C’est une posture intellectuelle saine, qui protège contre les rumeurs, les pseudo-sciences, les théories complotistes… mais aussi contre certaines manipulations politiques ou marketing.En résumé : le rasoir de Hitchens est une règle de bon sens déguisée en principe philosophique. Une règle qui rappelle ceci : si tu veux convaincre, apporte des preuves. Sinon, ton affirmation peut être balayée.
Quelle base secrète l’explorateur Jean Malaurie a-t-il découvert ?
02:38|Pour écouter les deux épisodes recommandés:1/ Pourquoi votre opinion change-t-elle sans que vous ne vous en rendiez compte ?Apple Podcast:https://podcasts.apple.com/us/podcast/pourquoi-votre-opinion-change-t-elle-sans-que-vous/id1048372492?i=1000746638428Spotify:https://open.spotify.com/episode/0dzW7snN390LBqxeDluaoW?si=kTTF4LlVSMGVOQ9S_5XAEA2/ Dans quel pays est-il interdit de chanter en playback ?Apple Podcast:https://podcasts.apple.com/us/podcast/dans-quel-pays-est-il-interdit-de-chanter-en-playback/id1048372492?i=1000746550059Spotify:https://open.spotify.com/episode/3Ocem5LLM6sPtRnuyrll6W?si=MEBGO8qeSFGMVpiqLh9_3A--------------------------En 1951, l’explorateur et ethnologue français Jean Malaurie fait une découverte qui va le bouleverser et, surtout, donner une dimension politique à toute sa vie : au Groenland, dans l’extrême Nord, il tombe sur l’existence d’une immense base militaire américaine en cours de construction, que l’on n’avait pas annoncée publiquement. Une base stratégique, secrète, surgie dans un territoire que l’on imagine alors encore largement préservé.À cette époque, Jean Malaurie n’est pas encore l’auteur célèbre qu’il deviendra plus tard avec Les Derniers Rois de Thulé. Il est d’abord un homme de terrain, fasciné par le monde polaire, la géologie, la cartographie, et la vie des Inuits. Il explore le Nord du Groenland, dans la région de Thulé, une zone isolée, rude, mais habitée depuis des siècles. Son projet, au départ, n’a rien de militaire : il observe, il mesure, il marche, il partage le quotidien des habitants.Et puis, au détour de son expédition, il découvre ce qui ressemble à une apparition : une gigantesque infrastructure américaine en train de naître dans la toundra. Ce n’est pas une cabane, ni un petit poste avancé. C’est une véritable ville militaire, avec des engins, des pistes, des bâtiments, un dispositif logistique colossal. Cette base, c’est Thulé : un futur verrou arctique dans la stratégie américaine.Pourquoi l’Arctique ? Parce que nous sommes au début de la Guerre froide. Les États-Unis cherchent alors à sécuriser une position avancée qui permette de surveiller l’Union soviétique, de détecter des attaques, et d’installer des systèmes de défense ou de dissuasion. L’Arctique devient un espace clé : c’est le chemin le plus court entre l’Amérique du Nord et la Russie. Autrement dit : le Groenland, ce n’est plus seulement de la glace et des fjords, c’est un point géopolitique majeur.Mais ce qui frappe Malaurie, c’est surtout le coût humain. L’installation de cette base implique des bouleversements énormes pour les populations inuites locales. Dans ces territoires où tout repose sur l’équilibre fragile entre l’homme et la nature, l’arrivée d’un chantier militaire transforme brutalement l’environnement, le rythme, les déplacements, les ressources. Et surtout, elle annonce un basculement : désormais, les habitants ne sont plus seuls maîtres chez eux.Cette découverte agit comme un réveil. Malaurie comprend que l’exploration n’est pas neutre : elle est traversée par des intérêts de puissance. Dès lors, il ne sera plus seulement un scientifique ou un aventurier. Il deviendra aussi un témoin et un défenseur des peuples arctiques.En résumé : en 1951, Jean Malaurie découvre la base américaine secrète de Thulé au Groenland — un symbole de la Guerre froide — et cette découverte changera le sens de son œuvre, en le plaçant face aux conséquences concrètes de la géopolitique sur les Inuits.
Pourquoi le feu devient-il une sphère dans l'espace ?
02:34|Dans l’espace, une flamme ne ressemble pas du tout à celle qu’on connaît sur Terre. Ici-bas, quand on allume une bougie, le feu forme naturellement une “goutte” étirée vers le haut. Mais en microgravité, le feu devient une boule : une flamme presque parfaitement sphérique. C’est spectaculaire… et c’est surtout une conséquence directe des lois de la physique.Sur Terre, la flamme monte parce que l’air chaud monte. Lors de la combustion, le combustible réagit avec l’oxygène et libère de la chaleur. L’air autour de la flamme est donc chauffé, ce qui le rend moins dense. Résultat : cet air chaud s’élève sous l’effet de la gravité. C’est ce qu’on appelle la convection, liée à la poussée d’Archimède. En montant, l’air chaud emporte les gaz brûlés et “aspire” en bas de la flamme de l’air frais riche en oxygène. Ce flux permanent alimente le feu et étire la flamme verticalement. Le feu n’est donc pas naturellement pointu : il est “tiré” vers le haut par le mouvement de l’air.Mais dans l’espace, ce mécanisme s’effondre. En microgravité, il n’y a pratiquement plus de convection : l’air chaud ne monte pas, car il n’y a plus de force dominante pour séparer “air chaud” et “air froid”. Les gaz brûlés restent autour de la zone de combustion au lieu de s’évacuer vers le haut. Du coup, l’oxygène n’arrive plus par le bas comme sur Terre : il arrive lentement depuis toutes les directions, uniquement par diffusion, c’est-à-dire par le mouvement aléatoire des molécules. Cette alimentation en oxygène étant symétrique, la flamme l’est aussi : elle devient sphérique.Autre effet surprenant : comme l’oxygène arrive plus lentement, la combustion est souvent plus douce. La flamme est généralement plus froide, plus lente et plus “propre”, avec moins de suie. C’est pour cela qu’en microgravité, la flamme paraît parfois bleutée et moins lumineuse.Mais attention : cette beauté est dangereuse. Dans un vaisseau spatial, tout est confiné. Il y a des câbles, des plastiques, des textiles techniques, des mousses isolantes… un environnement très inflammable si une étincelle se produit. Et une flamme sphérique est difficile à gérer : elle peut flotter, se déplacer avec les courants d’air produits par la ventilation ou par les mouvements des astronautes. Sur Terre, le feu “monte”, donc on sait où il va. Dans l’espace, il peut aller partout.Le risque est encore plus critique si l’atmosphère du vaisseau contient davantage d’oxygène. Pour réduire la pression totale et alléger les contraintes sur la coque, certaines configurations de mission envisagent un air enrichi en oxygène. Mais plus l’air est riche en oxygène, plus les matériaux s’enflamment facilement et plus un départ de feu peut devenir violent.C’est pour cela que la maîtrise du feu en microgravité est un enjeu essentiel : comprendre comment une flamme naît, se propage et comment l’éteindre rapidement, c’est littéralement une question de survie pour les missions spatiales longues.
Pourquoi perd-on du poids par l'expiration ?
02:31|Lorsque l’on parle de « brûler » des graisses, l’image qui nous vient souvent en tête est celle d’un glaçon qui fond. En réalité, la biologie raconte une histoire bien plus surprenante : lorsque nous perdons de la graisse après un effort physique, la majorité de cette graisse quitte notre corps… par la respiration.Tout commence dans nos cellules. Lorsqu’elles ont besoin d’énergie — pendant une séance de sport, une marche rapide ou même une simple montée d’escaliers — elles vont puiser dans leurs réserves : les triglycérides. Ces molécules sont stockées dans les adipocytes, nos cellules graisseuses. Leur rôle est d’emmagasiner de l’énergie sous une forme compacte et stable, en attendant un moment de besoin. Quand l’organisme réclame du carburant, ces triglycérides sont démontés en acides gras et en glycérol.C’est dans les mitochondries que la véritable « combustion » a lieu. Grâce à l’oxygène que nous respirons, ces acides gras sont métabolisés. Et c’est là que survient la révélation : la graisse ne disparaît pas, elle se transforme. Son produit final n’est pas de la chaleur ni de la sueur, mais principalement du dioxyde de carbone (CO₂) et de l’eau.Pour donner une idée concrète : si vous perdez 100 g de graisse, environ 84 g seront transformés en CO₂. À un rythme respiratoire normal, cela représente plusieurs dizaines de litres de CO₂ expirés au fil des heures. La dépense énergétique d’une séance de sport d’intensité modérée peut mobiliser 50 à 150 g de graisse, ce qui signifie que l’on expire littéralement des dizaines de grammes de graisse sous forme de CO₂ après un seul entraînement.Les 16 % restants de la masse initiale sont transformés en eau, éliminée par la sueur, l’urine et même la vapeur d’eau expirée. Contrairement aux idées reçues, la transpiration n’est pas la preuve que nous « brûlons » de la graisse : elle sert surtout à refroidir le corps.Cette découverte — popularisée après une étude publiée en 2014 dans BMJ — a renversé nombre d’idées que l’on croyait acquises : maigrir est avant tout un processus respiratoire. Chaque mouvement accélère la transformation des triglycérides en CO₂, et c’est en expirant que nous perdons réellement du poids.En résumé : pour perdre de la graisse, il faut bouger… et respirer. L’oxygène que nous inspirons, et surtout le CO₂ que nous expirons, portent la signature chimique de notre perte de poids.