Partager

Choses à Savoir SCIENCES
Les personnes les plus riches sont-elles les plus intelligentes ?
Rediffusion
Dans nos sociétés occidentales, le mérite, comme vecteur de réussite professionnelle, joue un rôle essentiel. On considère souvent que, dans ces conditions, l'intelligence est le principal moteur de l'ascension sociale, et donc de l'accès à des professions mieux rémunérées.
En résumé, les personnes intelligentes sont plus riches que les autres. Or une récente étude vient contredire, du moins en partie, une telle affirmation.
Elle a porté sur plus de 59.000 Suédois, qui ont tous subi un test d'aptitudes cognitives. Il s'agit donc d'un échantillon assez large, qui se signale aussi par la diversité des professions exercées et des rémunérations perçues.
Cependant, cette recherche ne concerne que des hommes, issues d'une seule nationalité. c'est là une limite à prendre en compte.
Les auteurs de l'étude ne remettent pas en cause le lien entre les capacités intellectuelles d'un individu et sa réussite professionnelle. Cette corrélation a d'ailleurs été mise en évidence par de précédentes recherches.
Cette étude, cependant, tend à la relativiser. En effet, ses résultats montrent qu'au-delà d'un certain niveau de salaire, les aptitudes de la personne qui le gagnent semblent stagner. Comme si elles atteignaient un seuil, impossible à dépasser.
De fait, cette étude indique qu'au-delà d'un salaire annuel de 60.000 euros, gagné par 1 % des participants, les résultats de ces derniers aux tests étaient inférieurs à ceux des personnes gagnant un peu moins d'argent qu'eux.
Ce qui tendrait à prouver que l'accès à ces postes très bien rémunérés ne dépend pas seulement des aptitudes intellectuelles. D'autres facteurs expliqueraient le succès d'un parcours professionnel.
L'appartenance à certains milieux sociaux serait l'un d'entre eux. Dans ce cas, les relations que peut faire jouer la famille, et l'éducation soignée qu'elle ne manque pas de donner aux enfants, peuvent faire avancer une carrière plus sûrement que la seule possession de capacités intellectuelles.
Certains traits de personnalité ne sont pas non plus sans influence sur un parcours professionnel. Mais la chance peut aussi jouer un rôle, offrant, à certains moments, des opportunités de carrière à ceux qui savent les saisir.
More episodes
View all episodes

Pourquoi frissonnons-nous parfois en urinant ?
02:24|Ce phénomène étrange, presque comique, mais très courant, porte un nom scientifique : le “pee shiver”, littéralement « frisson de miction ». Beaucoup d’hommes le connaissent, certaines femmes aussi, et les scientifiques ont proposé plusieurs mécanismes complémentaires pour expliquer pourquoi le corps peut soudain se mettre à trembler au moment d’uriner.D’abord, il faut comprendre que la miction provoque une décharge soudaine du système nerveux autonome, celui qui gère les fonctions inconscientes : respiration, digestion, rythme cardiaque… et accès aux toilettes. Lorsque la vessie est pleine, le corps active le système nerveux sympathique, celui qui met l’organisme en état d’alerte. En urinant, on libère cette tension : le système parasympathique reprend le dessus, entraînant une chute de l’adrénaline et une forme de relaxation brutale. Ce basculement nerveux, très rapide, peut déclencher un petit frisson involontaire, comme un court-circuit physiologique.Deuxième mécanisme : la variation de température corporelle. L’urine stockée dans la vessie est plus chaude que l’air ambiant. Lorsque l’on urine, on perd un peu de chaleur interne. Cela ne refroidit pas réellement l’organisme de façon mesurable, mais la sensation de chaleur qui s’échappe peut suffire à activer le réflexe classique de thermorégulation : un frisson destiné à réchauffer le corps. C’est le même type de réflexe que lorsqu’on sort d’un bain ou qu’une brise froide traverse le dos.Troisième piste : la libération de tension musculaire. Une vessie pleine mobilise de nombreux muscles — abdominaux, plancher pelvien, bas du dos. Au moment d’uriner, ces muscles se relâchent en masse, et cette relaxation soudaine peut provoquer une micro-secousse comparable au relâchement d’un spasme. Le corps passe littéralement d’un état de contraction à un état de détente en une fraction de seconde.Enfin, plusieurs chercheurs pensent que ce frisson pourrait être un reste évolutif, un vestige de mécanismes archaïques qui synchronisaient les systèmes nerveux et hormonaux lors de certaines fonctions vitales. Rien de dangereux donc : un simple bug fascinant de notre biologie.En résumé, les frissons au moment de faire pipi sont le résultat d’une combinaison de facteurs : changement brutal d’activité du système nerveux, légère perte de chaleur, relaxation musculaire et réflexes ancestraux. Un phénomène surprenant, mais parfaitement normal — et qui rappelle que même les gestes les plus ordinaires cachent une mécanique biologique étonnamment complexe.
Pourquoi le pain grillé tombe toujours côté beurre ?
02:27|Contrairement à la croyance populaire qui attribue ce phénomène à la malchance, l’atterrissage fréquent du pain grillé côté beurre est une question de physique de la rotation, mise en évidence par le physicien britannique Robert Matthews. Ce n'est pas une loi universelle absolue (la probabilité n'est pas de $100\%$), mais une forte tendance dictée par deux facteurs principaux : la hauteur de la table et le temps de chute...
Pourquoi un volcan tropical a-t-il pu déclencher la Peste noire en Europe ?
02:56|Pendant des siècles, l'arrivée de la Peste noire en Europe (1347-1351), le fléau le plus meurtrier de l'histoire du continent, a été vue comme une simple fatalité : le bacille Yersinia pestis, né en Asie centrale, aurait voyagé avec les caravanes et les marchands jusqu'aux ports méditerranéens.Cependant, une étude révolutionnaire propose un scénario d'« effet papillon » climatique. Selon cette hypothèse, la pandémie ne serait pas seulement due au commerce, mais aurait été indirectement causée par une éruption volcanique tropicale survenue au milieu du XIVe siècle, dont l'identité exacte reste inconnue. Ce n'est pas l'éruption elle-même qui a infecté les gens, mais la chaîne d'événements climatiques qu'elle a déclenchée, préparant le terrain pour la catastrophe.La Réaction en Chaîne ClimatiqueUne éruption volcanique majeure injecte des quantités massives de cendres et de soufre dans la stratosphère, formant un voile d'aérosols qui peut persister pendant des années. Ce voile reflète la lumière du soleil, provoquant un refroidissement global temporaire, une période connue en paléoclimatologie comme un « hiver volcanique ».ShutterstockEn Europe, ce refroidissement soudain et les perturbations météorologiques associées ont provoqué une crise agricole sans précédent. Les récoltes ont chuté drastiquement, plongeant la population dans la famine et la faiblesse immunitaire.L'Importation FatalePour survivre à la pénurie, les royaumes européens ont été contraints d'importer massivement des céréales par voie maritime. C'est ici que le scénario prend une tournure fatale. Ces importations ne provenaient pas de régions voisines épargnées, mais probablement de zones de la mer Noire ou d'Asie, où la bactérie de la Peste noire était déjà endémique au sein des populations de rongeurs et de puces.L'étude suggère que ce besoin urgent et massif d'importer a créé un pont écologique idéal pour la transmission. Les navires transportant le grain contenaient inévitablement des rats noirs (Rattus rattus) et leurs puces infectées. Celles-ci, normalement confinées aux steppes d'Asie, ont ainsi été transportées en grand nombre, rapidement et directement, des foyers asiatiques jusqu'aux centres portuaires européens (Constantinople, Marseille, Messine, etc.).L'éruption volcanique a donc agi comme un détonateur climatique, forçant l'Europe médiévale à dépendre d'importations qui ont involontairement apporté le bacille. C'est l'illustration parfaite de l'effet papillon : un événement géologique lointain a mis en place les conditions météorologiques et socio-économiques exactes pour transformer un foyer régional de maladie en une pandémie mondiale.
Quelle est la température sur les planètes du système solaire ?
03:18|La température d’une planète n’est pas due à un seul facteur, mais à un ensemble d’éléments physiques qui interagissent entre eux...
La conscience précède-t-elle la matière ?
03:18|Depuis des siècles, le débat oppose deux visions du monde : le matérialisme, selon lequel la matière produit la conscience, et l’idéalisme, qui affirme au contraire que la conscience est première. Les travaux récents de Maria Strømme, physicienne et spécialiste de nanotechnologie et de science des matériaux, ravivent ce débat sous un angle inédit. Dans une étude publiée dans la revue AIP Advances, elle propose une théorie audacieuse : la conscience ne serait pas un produit tardif de l’évolution biologique, mais le substrat fondamental de la réalité. Selon elle, la matière, l’espace et le temps émergeraient d’un champ de conscience primordial.Strømme, qui travaille habituellement sur la structure atomique des nanomatériaux, transpose ici des outils mathématiques et des concepts issus de la physique fondamentale pour décrire la conscience comme une entité physique au sens strict, comparable à un champ quantique. Dans ce cadre, les particules, les atomes, les molécules et même les objets macroscopiques ne seraient que des excitations locales de ce champ de conscience. Autrement dit, la matière ne serait pas la base du réel, mais une manifestation secondaire, dérivée.Cette idée s’accompagne d’une implication majeure : les consciences individuelles ne seraient pas réellement séparées. Elles correspondraient à des fluctuations locales d’un même champ unifié, comme des vagues appartenant au même océan. La sensation de séparation entre individus serait alors une illusion produite par la configuration particulière de ces fluctuations. Ce point ouvre la porte à une vision radicalement différente de l’esprit et de la relation entre les êtres vivants.L’un des aspects les plus fascinants de la théorie est qu’elle offre un cadre théorique pour interpréter certains phénomènes souvent classés dans le paranormal : télépathie, intuition collective, expériences de mort imminente ou encore l’idée que la conscience puisse survivre à la mort physique. Strømme ne présente pas ces phénomènes comme avérés, mais considère qu’un champ de conscience fondamental pourrait, en principe, les expliquer. Elle affirme que ces hypothèses devraient être testables, ce qui leur donne un statut scientifique potentiel plutôt que purement spéculatif.Cette théorie reste néanmoins très controversée. Elle soulève des questions majeures : comment mesurer un tel champ ? Comment distinguer la conscience fondamentale d’une forme d’énergie ou d’information déjà connue ? Aucun consensus n’existe encore, et de nombreux chercheurs considèrent cette approche comme hautement spéculative. Mais la force du travail de Strømme réside dans le fait qu’il propose un modèle formel, issu d’une physicienne rigoureuse, qui tente de relier la science des matériaux aux fondements mêmes de la réalité.En conclusion, selon Maria Strømme, il est possible que la conscience précède la matière. La réalité matérielle serait alors une émergence secondaire d’un champ de conscience universel, bouleversant notre compréhension traditionnelle de l’univers et de notre place en son sein.
Comment rendre les gens plus altruiste grâce à Batman ?
02:41|Une étude menée à Milan par des psychologues de l’université Cattolica del Sacro Cuore s’est intéressée à une question simple mais audacieuse : peut-on rendre les gens plus gemtils envers autrui grâce à quelque chose d’aussi incongru qu’un homme déguisé en Batman dans le métro ? Contre toute attente, la réponse semble être oui, selon cette recherche publiée dans la revue npj Mental Health Research.Les chercheurs ont mené une expérience dans le métro milanais. Lors de certains trajets, une femme simulait une grossesse pour observer si des passagers se levaient pour lui céder leur siège. Dans les conditions normales, environ 37,7 % des passagers lui laissaient la place. Mais lorsque, par une autre porte, un homme déguisé en Batman montait dans la même rame, le taux grimpait à 67,2 %. Autrement dit, la présence du super-héros doublait presque la probabilité d’un comportement prosocial.Fait encore plus étonnant : parmi ceux qui se levaient, près de 44 % affirmaient ne pas avoir vu Batman. L’effet se produisait donc même sans perception consciente du personnage. Comment expliquer cela ?Selon l’équipe italienne, deux mécanismes se combinent. D’abord, la présence d’un élément inattendu – ici un homme masqué et capé dans un contexte ordinaire – rompt la routine mentale. Dans les transports, nous sommes souvent en mode “pilote automatique”, absorbés par nos pensées ou par nos écrans. Un personnage aussi incongru que Batman sert de rupture cognitive et ramène l’attention sur l’environnement. Une fois plus attentifs, les passagers remarquent davantage qu’une personne enceinte a besoin d’aide.Ensuite, Batman agit comme un “prime” symbolique. Même sans le voir clairement, son costume représente dans l’imaginaire collectif la justice, la protection et l’entraide. La simple présence du symbole active des normes sociales positives. Le cerveau, même inconsciemment, se retrouve orienté vers une idée simple : aider les autres est une bonne chose. Ce petit coup de pouce psychologique suffit parfois à déclencher un comportement prosocial.Cette étude montre que l’altruisme n’est pas seulement une caractéristique individuelle stable, mais aussi un phénomène hautement contextuel. La gentillesse peut être stimulée par des éléments extérieurs, même subtils : une surprise, une perturbation de la routine, un symbole culturel fort. En d’autres termes, de petites interventions dans l’espace public – installations artistiques, mises en scène, nudges sociaux – pourraient encourager l’entraide de manière très concrète.Dans un monde où beaucoup évoluent sans vraiment regarder autour d’eux, il suffit parfois d’un Batman inattendu pour rappeler que la bienveillance est toujours à portée de main.
Pourquoi 9, 32, 66 et 83 ans sont des âges clefs ?
03:22|Une vaste étude menée par l’équipe de l’Université de Cambridge a analysé les cerveaux de 3 802 individus âgés de 0 à 90 ans grâce à de l’IRM de diffusion, afin de cartographier comment les connexions neurales évoluent tout au long de la vie. Les chercheurs ont identifié quatre points de bascule – vers 9, 32, 66 et 83 ans – qui marquent des transitions entre cinq grandes phases d’organisation cérébrale. Chaque point correspond à un changement marqué dans la façon dont les régions du cerveau sont connectées et dans l’efficacité globale du réseau neuronal.9 ans correspond à la fin de l’enfance et au début de l’adolescence cérébrale. Depuis la naissance, le cerveau a produit un excès de connexions, puis a procédé à une élimination massive, appelée « poda synaptique ». En parallèle, la matière grise et la matière blanche continuent de croître, ce qui améliore l’épaisseur corticale et stabilise les plis du cortex. Cette période optimise les fonctions fondamentales : langage, mémoire, coordination, apprentissages de base. Le passage vers 9 ans reflète un basculement global : le cerveau quitte la phase d’enfance et entre dans une adolescence prolongée sur le plan neuronal.32 ans marque l’entrée dans la pleine maturité adulte. Entre 9 et 32 ans, les connexions se renforcent, la matière blanche se densifie et les échanges entre régions distantes deviennent plus rapides et plus efficaces. Le cerveau affine son organisation interne, ce qui correspond au pic des performances cognitives : raisonnement abstrait, mémoire de travail, rapidité intellectuelle, flexibilité mentale. Autour de 32 ans se produit le changement le plus marqué de toute la vie : le réseau neuronal se stabilise et atteint un plateau structurel, caractéristique du cerveau adulte pleinement mature.66 ans correspond au début du vieillissement cérébral. Après plusieurs décennies de relative stabilité, la connectivité globale commence à diminuer. La matière blanche, essentielle aux communications longue distance dans le cerveau, montre des signes de dégradation. La conséquence est un ralentissement progressif de la vitesse de traitement, une diminution de la flexibilité cognitive et parfois une réduction de la mémoire de travail. Néanmoins, certaines capacités – comme les savoirs accumulés ou l’intelligence cristallisée – restent relativement préservées.83 ans marque l’entrée dans la phase de vieillesse avancée. À cet âge, le cerveau connaît une nouvelle reconfiguration : les réseaux deviennent plus fragmentés et s’appuient davantage sur des connexions locales. La communication globale perd en efficacité, ce qui augmente la vulnérabilité aux fragilités cognitives et aux maladies neurodégénératives. Certaines zones plus robustes peuvent compenser partiellement, mais l’organisation générale du réseau est moins stable et moins intégrée.En résumé, cette étude montre que le cerveau ne vieillit pas de façon linéaire. Il traverse cinq grandes phases, avec des changements profonds à 9, 32, 66 et 83 ans. Ces âges clés correspondent à des réorganisations profondes : apprentissage fondamental, maturité cognitive, entrée dans le vieillissement et vieillesse avancée.
Comment éteindre un feu avec du son ?
02:39|Eteindre un incendie avec… du son. L’idée semble relever de la fiction, et pourtant elle repose sur des principes physiques parfaitement maîtrisés. Depuis quelques années, des chercheurs et des ingénieurs conçoivent des extincteurs qui n’utilisent ni eau, ni mousse, ni CO₂, mais simplement des ondes sonores à basse fréquence. Leur efficacité s’appuie sur trois phénomènes clés : les variations de pression, la déstabilisation du front de flamme, et l’éloignement de l’oxygène.Pour comprendre ce mécanisme, il faut revenir à la nature d’une flamme. Un feu n’est pas un objet, mais une réaction chimique auto-entretenue, appelée combustion, qui nécessite trois éléments : un carburant, une source de chaleur et un comburant, en général l’oxygène de l’air. Supprimez l’un des trois, et la combustion s’arrête. Les extincteurs sonores ne retirent pas le carburant ni la chaleur : ils agissent directement sur l’oxygène.Les appareils utilisent des ondes sonores très graves, généralement entre 30 et 60 hertz. À ces fréquences, le son produit de larges oscillations de pression dans l’air, capables de perturber la zone de combustion. Une onde sonore n’est rien d’autre qu’une succession de compressions et de décompressions de l’air ; lorsqu’elle est dirigée vers une flamme, elle impose à la colonne d’air un mouvement rapide et répétitif. Ce mouvement chasse littéralement l’oxygène hors du front de flamme, au même titre que souffler sur une bougie, mais de façon bien plus contrôlée et régulière.L’effet n’est pas seulement un déplacement mécanique du comburant. Les basses fréquences provoquent aussi des turbulences qui « étirent » la flamme, ce qui réduit sa température locale. Or, si la température baisse en-dessous du seuil nécessaire pour entretenir la réaction chimique, la combustion s’éteint. Le feu n’est donc pas “soufflé”, mais bel et bien étouffé, privé de l’environnement stable dont il a besoin pour se maintenir.Ce type d’extinction présente plusieurs avantages. Il n’utilise aucun produit chimique, ne laisse aucun résidu et n’endommage pas les surfaces. Il est particulièrement adapté aux feux domestiques, aux laboratoires, aux cuisines industrielles ou à l’électronique, où l’eau serait dangereuse. Ses limites sont également connues : il fonctionne surtout sur les feux de petite taille et ne coupe pas le carburant. Un feu qui se nourrit continuellement d’une source massive d’énergie ou de matière brûlable ne pourra pas être arrêté par le son seul.Néanmoins, ces extincteurs acoustiques ouvrent une voie prometteuse. Ils illustrent comment la physique des ondes peut, littéralement, priver un feu de voix et le faire disparaître.
Pourquoi un cycliste fait-il moins d'effort devant une voiture ?
02:01|On connaît bien l’aspiration qui aide le cycliste placé derrière un véhicule : en profitant de la zone de basse pression créée dans son sillage, il pédale plus facilement. Mais un chercheur néerlandais a récemment démontré un phénomène beaucoup plus surprenant : un cycliste placé devant une voiture bénéficie lui aussi d’un effet aérodynamique favorable. Autrement dit, la simple présence d’un véhicule derrière lui peut réduire son effort… même s’il le précède.Comment est-ce possible ? Lorsqu’une voiture roule, elle ne se contente pas de laisser une traînée d’air derrière elle. Elle exerce aussi une pression sur la masse d’air située devant sa calandre, la poussant vers l’avant. Cette « vague d’air » n’est pas violente au point de déstabiliser un cycliste, mais suffisante pour modifier subtilement la distribution des pressions autour de lui. Résultat : la résistance de l’air que le cycliste doit affronter diminue.Pour comprendre ce mécanisme, il faut rappeler que l’essentiel de l’effort d’un cycliste à vitesse constante sert à lutter contre le vent relatif. Plus il avance vite, plus cette résistance croît de façon non linéaire. Or, le véhicule en approche crée une zone où l’air est légèrement comprimé devant lui, ce qui réduit la différence de pression entre l’avant et l’arrière du cycliste. Cette réduction, même très faible, suffit pour abaisser la traînée aérodynamique. Le cycliste dépense alors moins d’énergie pour maintenir la même vitesse.Les mesures réalisées dans des conditions contrôlées sont étonnantes : avec une voiture située à environ trois mètres derrière, un cycliste peut gagner plus d’une minute sur un contre-la-montre de 50 kilomètres. Un avantage spectaculaire, comparable à celui obtenu en changeant de matériel ou en optimisant sa position sur le vélo.Cet effet explique certaines situations observées en compétition, où des cyclistes précédant un véhicule d’assistance semblent progresser avec une aisance inattendue. C’est aussi pour cette raison que les règlements du cyclisme professionnel encadrent strictement les distances entre coureurs et véhicules suiveurs, afin d’éviter des gains artificiels liés à l’aérodynamique.Mais ce phénomène soulève aussi des questions de sécurité. Pour bénéficier de cet avantage, il faut qu’un véhicule se trouve très près du cycliste — une situation dangereuse sur route ouverte. Néanmoins, du point de vue purement scientifique, cette découverte révèle à quel point l’aérodynamique du cyclisme est subtil : même l’air déplacé devant une voiture peut alléger l’effort d’un sportif.En bref, si un cycliste pédale plus facilement lorsqu’une voiture le suit de près, ce n’est pas un hasard : c’est la physique de l’air en mouvement qui lui donne un sérieux coup de pouce.