دقيقة للعِلم
All Episodes
نوبل الكيمياء عامَ 1955.. الكبريتُ والحب
12:18|قدْ لا يثيرُ الكبريتُ، برائحتِه المميزةِ ولونِه الأصفرِ، أفكارًا مباشرةً حولَ العناصرِ الأساسيةِ للحياة، لكنَّه عنصرٌ لا غِنى عنه في الحياةِ كما نعرفُها. فالكبريتُ هوَ عنصرٌ موجودٌ في العديدِ منَ الجزيئاتِ البيولوجيةِ ويؤدي عدةَ أدوارٍ حاسمةٍ في الكائناتِ الحية؛ فالكبريتُ جزءٌ لا يتجزأُ منْ بعضِ الأحماضِ الأمينية، والتي هيَ اللبِناتُ الأساسيةُ للبروتينات. كما يوجدُ الكبريتُ أيضًا في الإنزيماتِ المساعدةِ والفيتاميناتِ الضروريةِ لمختلِفِ التفاعلاتِ الأيضيةِ في الجسم. على سبيلِ المثال، يحتوي الثيامين (فيتامين ب1) على ذرةِ الكبريتِ وهوَ مركبٌ حيويٌّ لاستقلابِ الطاقة. يحتوي الإنزيمُ المساعدُ A CoA الذي يؤدي دورًا مركزيًّا في العديدِ منَ المساراتِ البيوكيميائية، على مجموعةٍ تحتوي على الكبريتِ تسمى مجموعةَ الثيول. وتشاركُ مُركباتُ الكبريتِ في عملياتِ إزالةِ السمومِ من الجسم. يستخدمُ الكبدُ جزيئاتٍ تحتوي على الكبريتِ للمساعدةِ في تحييدِ السمومِ وإزالتِها منَ الجسم. الجلوتاثيون، وهو ثلاثي الببتيد يتكونُ منْ ثلاثةِ أحماضٍ أمينية (بما في ذلكَ السيستين)، هوَ أحدُ مضاداتِ الأكسدةِ المهمةِ التي تساعدُ في إزالةِ السمومِ عنْ طريقِ الارتباطِ بالموادِّ الضارةِ وتحييدِها. تؤدي مركباتُ الكبريتِ دورًا في التنفسِ الخلوي، وهيَ العمليةُ التي تقومُ الخلايا منْ خلالِها بتوليدِ الطاقة. وتُعَدُّ مجموعاتُ الحديدِ والكبريت، التي تحتوي على ذراتِ الحديدِ والكبريت، منَ العواملِ المساعدةِ الأساسيةِ في الإنزيماتِ المشارِكةِ في نقلِ الإلكترونِ وإنتاجِ الطاقةِ داخلَ الميتوكوندريا. وتحتوي العديدُ منَ الفيتاميناتِ والإنزيماتِ المساعدةِ على الكبريت. على سبيلِ المثال، يحتوي البيوتين (فيتامين ب7) على الكبريتِ وَهوَ ضروريٌّ لمختلِفِ التفاعلاتِ الأيضية، بما في ذلكَ تخليقُ الأحماضِ الدهنية. بالإضافةِ إلى ذلك، يعملُ حمضُ الليبويك، وهوَ مركبٌ آخرُ يحتوي على الكبريت، كعاملٍ مساعدٍ للإنزيماتِ المشارِكةِ في استقلابِ الطاقة. باختصارٍ؛ نعرفُ الآنَ الكثيرَ عنْ دورِ ذلكَ العنصرِ في العديدِ منَ العملياتِ البيولوجية؛ والفضلُ في تلكَ المعرفةِ يرجعُ إلى العالِمِ الأمريكيِّ "فنسنت دو فيجنود" الحاصلِ على جائزةِ نوبل الكيمياءِ لعامِ ألفٍ وتِسعِمئةٍ وخمسةٍ وخمسين. تبدأُ قصةُ حصولِ "دو فيجنود" على نوبل بالكبريت.. وتنتهي بالأوكسايتوسين. والأوكسايتوسين الذي يُشارُ إليه غالبًا باسمِ "هرمونِ الحب" أو "هرمونِ الترابط" هوَ هرمونُ الببتيدِ الذي يحتلُّ مكانةً خاصةً في سجلاتِ الكيمياءِ الحيوية. يشاركُ ذلكَ الهرمونُ بشكلٍ وثيقٍ في مجموعةٍ منَ العملياتِ الفسيولوجيةِ والنفسية، معَ التركيزِ بشكلٍ أساسيٍّ على الترابُطِ الاجتماعي، وسلوكياتِ الأم، والوظائفِ الإنجابيةِ في كلٍّ منَ البشرِ والثدييات. تبدأُ قصةُ اكتشافِ الأوكسايتوسين وتفكُّكِه معَ فنسنت دو فيجنود، الكيميائيِّ الذي كانَ لديهِ فضولٌ شديدٌ حولَ دورِ الكبريتِ في الجزيئاتِ البيولوجية. في عامِ ألفٍ وتِسعِمئةٍ وثلاثةٍ وخمسين، حققَ "دو فيجنود" إنجازًا هائلاً منْ خلالِ عزلِ الأوكسيتوسين بنجاحٍ وتحديدِ تركيبِه الكيميائيِّ بدقة. كان هذا الإنجازُ بمنزلةِ علامةٍ بارزةٍ في مجالِ الكيمياءِ الحيوية، إذْ أصبحَ الأوكسيتوسين أولَ هرمون ببتيد يتمُّ فكُّ رموزِ تسلسلِه منَ الأحماضِ الأمينية. وقدْ مهدَ عملُ "دو فيجنود" الرائدُ الطريقَ لفهمٍ عميقٍ لدورِ الأوكسايتوسين في فسيولوجيا الإنسانِ والثدييات. يتمُّ إنتاجُ هذا الهرمونِ الرائعِ في منطقةِ ما تحتَ المهادِ ويتمُّ إطلاقُه بواسطةِ الغدةِ النخامية، ويعملُ كناقلٍ عصبيٍّ في الدماغ. وتمتدُّ آثارُها عبرَ التجربةِ الإنسانية، وتَلامُسِ جوانبِ الترابطِ العاطفيِّ، والثقةِ، والتعاطُفِ، وعلى وجهِ الخصوص، العلاقةِ الجنسيةِ الحميمةِ والإنجاب. كما يؤدي هذا الهرمونُ دورًا محوريًّا في الولادة، إذْ يُحفزُ انقباضاتِ الرحمِ ويُسهلُ إخراجَ حليبِ الثديِ في أثناءِ الرضاعة. إلى جانبِ فكِّ رموزِ التركيبِ الجزيئيِّ للأوكسايتوسين، حققَ فينسنت دو فيجنود إنجازًا رائعًا آخر، فقدْ نجحَ في إنتاجِ الأوكسيتوسين منْ خلالِ وسائلَ اصطناعية. لمْ يُظهرْ هذا الأوكسيتوسين الاصطناعيُّ قوةَ الكيمياءِ في تكرارِ الجزيئاتِ البيولوجيةِ فحسب، بلْ فتحَ البابَ أيضًا أمامَ إمكانياتٍ جديدةٍ في الطب.نوبل الكيمياء عامَ 1954.. رجلُ الروابطِ والسلام
24:33|الكيمياءُ مليئةٌ بالأسئلةِ التي لمْ يُجَبْ عنها. أحدُ الأسئلةِ الأولى التي طرحَها الناسُ منذُ العصورِ القديمةِ هوَ: ممَّ يتكونُ العالم؟أيْ أنَّنا إذا قمنا بتكبيرِ الجلدِ الموجودِ على طرفِ أصبعكَ بمقدارِ مليار مرة؛ فماذا سنرى؟ هلْ سيبدو ذلكَ مختلفًا عنْ تكبيرِ تفاحةٍ مثلاً؟ إذا قمنا بعدَ ذلكَ بتقطيعِ التفاحةِ إلى قطعٍ أصغرَ وأصغرَ باستخدامِ سكينٍ صغيرةٍ وهمية، فهلْ سنصلُ إلى نقطةٍ بحيثُ لمْ يعدْ منَ الممكنِ قطعُ القطعِ أصغر؟ كيفَ ستبدو تلكَ القطع، وهلْ ستظلُّ تحتوي على خصائصِ التفاح؟تُعدُّ الإجاباتُ عنْ هذهِ الأسئلةِ أساسيةً في الكيمياءِ الحديثة، ولمْ يتفقِ الكيميائيونَ على الإجابةِ إلا قبلَ بضعِ مئاتٍ منَ السنين. بفضلِ علماءَ مثلِ جون دالتون، الذي وضعَ أساسًا للمفهومِ الذي نعرفُه اليومَ باسمِ "الذرة".اقترحَ دالتون أنَّ كلَّ ذرةٍ منْ أيِّ عنصر، مثلِ الذهب، هيَ نفسُها كلُّ ذرةٍ أخرى منْ ذلكَ العنصر. كما أشارَ إلى أنَّ ذراتِ العنصرِ الواحدِ تختلفُ عنْ ذراتِ جميعِ العناصرِ الأخرى. اليومَ، ما زلْنا نعرفُ أنَّ هذا صحيحٌ في الغالب. فذرةُ الصوديوم تختلفُ عنْ ذرةِ الكربون. قدْ تشتركُ العناصرُ في بعضِ نقاطِ الغليانِ ونقاطِ الانصهارِ والسالبيةِ الكهربيةِ المتشابهة، ولكنْ لا يوجدُ عنصرانِ لهما مجموعةُ الخصائصِ الدقيقةِ نفسُها.بعدَ ذلك؛ تساءلَ العلماءُ عنِ القوى التي تربطُ الذراتِ بعضَها معَ بعض.في نهايةِ القرنِ التاسعَ عشَر، أصبحَ منَ الواضحِ أنَّه يتعينُ على العلماءِ أنْ يأخذُوا في الاعتبارِ عدةَ أنواعٍ مختلفةٍ منَ الروابطِ الكيميائية. فما يربطُ ذراتٍ في مركبٍ معين؛ لا يُمكنُ أنْ تكونَ هيَ الرابطةُ نفسُها التي تربطُ الذراتِ في مركبٍ آخر. فالرابطةُ التي تحدثُ بينَ الذراتِ المشحونةِ كهربائيًّا، والتي تُسمى بالأيونات؛ تسمى بالرابطةِ الأيونية، وهي الأكثرُ شيوعًا، توحدُ الذراتِ في بلوراتِ الأملاحِ البسيطة. وهناكَ نوعٌ آخرُ منَ الروابطِ يُسمى بالرابطةِ التساهمية. ويحدثُ عادةً عندَما تتحدُ الذراتُ لتشكلَ جزيئًا.ولفترةٍ طويلةٍ كانَ منَ الصعبِ تفسيرُ طبيعةِ الروابطِ التساهمية. وفي عامِ ألفٍ وتِسعِمئةٍ وستةَ عشَرَ اجتهدَ علماءُ في إثباتِ أنَّ هذهِ الظاهرةَ تنتجُ عنْ إلكترونينِ يشتركُ فيهما ذرتانِ متجاورتان. وبعدَ مرورِ أحدَ عشَرَ عامًا، تمكنَ علماءُ آخرونَ منْ تقديمِ تفسيرٍ ميكانيكيٍّ كميٍّ لهذهِ الظاهرة. ومعَ ذلك، لمْ يكنْ منَ الممكنِ إجراءُ معالجةٍ رياضيةٍ دقيقةٍ للرابطةِ التساهميةِ إلا في الحالةِ البسيطةِ التي يوحدُ فيها إلكترونٌ واحدٌ الذرتين. حتى جاءَ العالِمُ الأمريكي "لينوس بولينج"، الذي تمكنَ عنْ طريقِ استخدامِ فحصِ البلوراتِ بالأشعةِ السينيةِ منْ تحديدِ طبيعةِ الروابطِ التساهميةِ وتوضيحِ بنيةِ الموادِّ المعقدة؛ وهوَ ما أهلَه للحصولِ على جائزةِ نوبلِ الكيمياءِ لعامِ ألفٍ وتِسعِمئةٍ وأربعةٍ وخمسين. إلا أنَّ "بولينج" لمْ يكنْ فقطْ ذلكَ الشخصَ الذي اكتشفَ طبيعةَ أحدِ أهمِّ الروابطِ في عالمِ الكيمياء؛ بلْ كانَ واحدًا منْ أعظمِ العلماءِ والعاملينَ في المجالِ الإنسانيِّ ومدافعًا محبوبًا عنِ الحرياتِ المدنيةِ والقضايا الصحيةِ يحظى باحترامٍ كبير . فبسببِ شخصيتِه الديناميكيةِ وإنجازاتِه العديدةِ في مجالاتٍ متنوعةٍ على نطاقٍ واسع، أصبحَ منَ الصعبِ تعريفُ لينوس بولينج بشكلٍ مناسب. كانَ "بولينج" رجلًا رائعًا تناوَلَ بإصرارٍ بعضَ المشكلاتِ الإنسانيةِ الحاسمةِ بينما كانَ يسعى إلى مجموعةٍ مذهلةٍ منَ الاهتماماتِ العلمية، وكانَ معروفًا لدى الجمهورِ الأمريكيِّ كما كانَ معروفًا لدى المجتمعِ العلميِّ في العالم. وهوَ الشخصُ الوحيدُ على الإطلاقِ الذي حصلَ على جائزتَي نوبل دونَ أنْ يتقاسمَهما أحدًا، في الكيمياءِ عامَ ألفٍ وتِسعِمئةٍ وأربعةٍ وخمسين، وفي السلامِ عامَ ألفٍ وتِسعِمئةٍ واثنينِ وستين. بالإضافةِ إلى الاعترافِ العامِّ بهِ كواحدٍ منْ أعظمِ عالِمَينِ في القرنِ العشرين، فقدْ تمَّ الاعترافُ به عادةً منْ قِبَلِ زملائِه باعتبارِه الكيميائيَّ الأكثرَ تأثيرًا منذُ لافوازييه، مؤسسِ علمِ الكيمياءِ الحديثِ في القرنِ الثامنِ عشَر.نوبل الكيمياء عامَ 1953.. رائدُ كيمياءِ البوليمرات
10:26|في عالمِ الكيمياء، كانتِ الحدودُ الفاصلةُ بينَ الموادِّ الطبيعيةِ والاصطناعيةِ غيرَ واضحة. فالمنتجاتُ الطبيعيةُ مثل المطاطِ والسليلوزِ والبروتيناتِ كانتْ جزءًا منْ حياةِ الإنسانِ لعدةِ قرون. تلكَ الموادُّ لها خصائصُ فريدةٌ تجعلُها لا غنى عنها، بدءًا منَ المرونةِ المذهلةِ للمطاطِ وحتى البنيةِ القويةِ للسليلوز، وهوَ مكوِّنٌ رئيسيٌّ لجدرانِ الخلايا النباتية. وما يربطُ هذهِ الموادَّ المتنوعةَ هوَ وجودُ جزيئاتٍ كبيرةٍ جدًّا، تُعرفُ بالبوليمرات، في تركيبِها الكيميائي.وعلى الطرفِ الآخر، لدينا الموادُّ البلاستيكيةُ الاصطناعية، التي أحدثتْ ثورةً في الصناعاتِ والحياةِ اليومية. على الرغمِ منْ أصلِها الاصطناعي، تشتركُ الموادُّ البلاستيكيةُ في خيطٍ مشتركٍ معَ البوليمراتِ الطبيعية: فهيَ أيضًا تتكونُ منْ جزيئاتٍ كبيرةٍ بشكلٍ مذهل. لكنْ طوالَ معظمِ التاريخِ العلمي، ظلتِ الآلياتُ الكامنةُ وراءَ تكوينِ هذهِ الجزيئاتِ الضخمةِ لغزًا. حتى جاءَ العالِمُ "هيرمان شتاودينجر" بالتفسير.قبلَ العملِ الرائدِ الذي قامَ به شتاودينجر، كانَ الاعتقادُ السائدُ في المجتمعِ العلميِّ هوَ أنَّ البوليمراتِ كانتْ مجردَ تجمعاتٍ منْ جزيئاتٍ أصغر، متماسكةً معًا بواسطةِ قوىً ضعيفة. وبعبارةٍ أخرى، كانَ يُنظرُ إليها على أنَّها كتلٌ كبيرةٌ وغيرُ منظمةٍ منَ الذرات. تركتْ هذهِ الفكرةُ العديدَ منَ الأسئلةِ دونَ إجابةٍ حولَ خصائصِ هذهِ الموادِّ وبنيتِها.لكنَّ "هيرمان شتاودينجر " الكيميائيَّ الألمانيَّ تحدى هذهِ الحكمةَ التقليديةَ في أوائلِ القرنِ العشرين. وتجرأَ على اقتراحِ مفهومٍ جريءٍ إذْ قالَ إنَّ البوليمراتِ لمْ تكنْ مجردَ تجمعات، بلْ كانتْ تتكونُ منْ جزيئاتٍ طويلةِ السلسلةِ ومحددةٍ جيدًا. كانَ يُعتقدُ أنَّ هذهِ الجزيئاتِ تتكونُ منْ وحداتٍ متكررةٍ مرتبطٌ بعضُها ببعض، مثلَ عِقدٍ منَ اللؤلؤ.قوبلتْ فكرةُ "شتاودينجر" بالتشكيكِ والمقاومةِ منَ العديدِ منْ معاصرِيه. ومعَ ذلك، فقدْ ثابَرَ وأجرى أبحاثًا دقيقةً ونشرَ أبحاثًا رائدةً أرستِ الأساسَ لمجالِ كيمياءِ البوليمرات. واقترحَ أنَّ البلمرةَ - وهيَ العمليةُ التي ترتبطُ منْ خلالِها جزيئاتٌ أصغر، تسمى المونومرات، لتكوينِ البوليمرات – كانتْ هيَ العمليةُ الكيميائيةُ الأساسية.قوبلَ مفهومُ "شتاودينجر" الثوريُّ في البدايةِ بالتشكيكِ وحتى السخرية، ولكنْ معَ مرورِ الوقت، اكتسبتْ أفكارُه القَبولَ معَ ظهورِ المزيدِ منَ الأدلةِ ليحصلَ على جائزةِ نوبل في الكيمياءِ عامَ ألفٍ وتِسعِمئةٍ وثلاثةٍ وخمسينَ لعملِه الرائدِ في مجالِ الجزيئاتِ الكبيرة، وهوَ مصطلحٌ صاغَه لوصفِ هذهِ الجزيئاتِ الكبيرةِ الشبيهةِ بالسلسلة.لمْ يتحَدَّ مفهومُ هيرمانشتاودينجر الجريءُ العقيدةَ السائدةَ فحسب، بلْ فتحَ أيضًا آفاقًا جديدةً للبحثِ والابتكار. بدأَ العلماءُ في التعمُّقِ في عالَمِ البوليمرات، واكتشافِ بنيتِها وخصائصِها المعقدة. وقدْ مهدَ هذا الفهمُ الجديدُ الطريقَ لتطويرِ البوليمراتِ الاصطناعية، بما في ذلكَ مجموعةٌ واسعةٌ منَ الموادِّ البلاستيكيةِ التي غيرتِ الحياةَ الحديثة.واليومَ، تُعَدُّ كيمياءُ البوليمراتِ مجالًا مزدهرًا يواصلُ تطويرَ معرفتِنا بالجزيئاتِ الكبيرة. إذْ قامَ الباحثونَ بتسخيرِ قوةِ البوليمراتِ لإنشاءِ مجموعةٍ مذهلةٍ منَ المواد، بدءًا منَ الموادِّ البلاستيكيةِ القابلةِ للتحللِ إلى الموادِّ المركبةِ عاليةِ الأداءِ والمقاومة. ولقدْ أحدثتْ قدرتُنا على هندسةِ البوليمراتِ ومعالجتِها ثورةً في صناعاتٍ مثلِ الرعايةِ الصحيةِ والإلكترونياتِ وعلومِ المواد.وُلدَ هيرمانشتاودينجر في ولايةِ فرانكفورت على نهرِ الراين في الثالثِ والعشرينَ من مارس عامَ ألفٍ وثَمانِمئةٍ وواحدٍ وثمانين. كانَ يحبُّ النباتاتِ والزهور، لذا؛ درسَ علمَ النباتِ على يدِ جورج كليبس في جامعةِ "هالي" بعدَ تخرُّجِه في المدرسةِ الثانويةِ في عامِ ألفٍ وثَمانِمئةٍ وتسعةٍ وتسعين. اقترحَ عليهِ والدُه أنْ يأخذَ بعضَ دوراتِ الكيمياء؛ للحصولِ على فهمٍ أفضلَ لعلمِ النبات. وبعدَ هذهِ النصيحةِ الأبوية، درسَ هيرمان الكيمياءَ في جامعاتِ هالي ودارمشتات وميونيخ. أصبحتِ الكيمياءُ اهتمامَه الرئيسي، وفي عامِ ألفٍ وتِسعِمئةٍ وثلاثة، في عمرٍ يناهزُ اثنينِ وعشرينَ عامًا، حصلَ على درجةِ الدكتوراة.نوبل الكيمياء عامَ 1952.. فصلُ المواد
13:28|في الأروقةِ الهادئةِ لجامعةِ كامبريدج خلالَ ثلاثينياتِ القرنِ العشرين، التقى عقلانِ لامعانِ سعيًا وراءَ فكرةٍ ثوريةٍ منْ شأنِها أنْ تُعيدَ تشكيلَ مشهدِ الكيمياءِ التحليليةِ إلى الأبد. "آرتشر جون بورتر مارتن"، وهوَ كيميائيٌّ شابٌّ وفضولي، وجدَ نفسَه يفكرُ في ألغازِ تقنياتِ الفصلِ في أثناءِ عملِه على كيمياءِ البنسلين. وبجانبِه، كانَ "ريتشارد لورانس ميلينجتون سينج" عالِمُ الكيمياءِ الحيويةِ الموهوبُ الذي يتمتعُ بفضولٍ لا يشبع، والذي كانَ وقتَها يستكشفُ طرقًا لكشفِ تعقيداتِ البروتينات.تقاربتْ مساراتُهما الفردية، التي تبدو منفصلة، عندَما شرَعا في تعاونٍ لابتكارِ تقنيةٍ تُعرفُ الآنَ باسمِ كروماتوغرافيا التقسيم؛ أوِ التفريقِ اللوني.كروماتوغرافيا التقسيمِ هيَ تقنيةُ فصلٍ تُستخدمُ في الكيمياءِ التحليليةِ لفصلِ الخليطِ وتحديدِ مكوناتِه بناءً على التقسيمِ التفاضُليِّ (أوِ التوزيع) بينَ مرحلتينِ غيرِ قابلتَينِ للامتزاج. وتُمكِّنُ هذهِ التقنيةُ العلماءَ منْ تحديدِ المكوناتِ الفرديةِ داخلَ الخليطِ وقياسِها، مما يؤدي إلى تحسينِ فهمِ تكوينِ العينة. وهذا أمرٌ بالغُ الأهميةِ في مجالاتٍ مثلَ تحليلِ الطبِّ الشرعي، ومراقبةِ الجودة، والرصدِ البيئي. وقدْ نجحَ التعاوُنُ بينَ "مارتن" و"سينج" في ابتكارِ تلكَ الطريقةِ بعدَ أبحاثٍ دامتْ لنحوِ ستِّ سنواتٍ كاملة، وبعدَ نحوِ عشرينَ عامًا على ابتكارِ طريقةِ الفصلِ هذه؛ حصلَ الثنائيُّ على جائزةِ نوبل الكيمياءِ لعامِ ألفٍ وتِسعِمئةٍ واثنينِ وخمسين. لكنْ؛ كيفَ يُمكنُ أنْ يحصلَ عالِمانِ على تلكَ الجائزةِ لابتكارِ طريقةٍ لفصلِ المواد؟ تُركزُ الكيمياءُ إلى حدٍّ كبيرٍ على دراسةِ المنتجاتِ الطبيعية، التي يتمُّ الحصولُ عليها منَ الحيواناتِ أوِ النباتاتِ أوْ حتى البكتيريا والكائناتِ الحيةِ الدقيقةِ الأخرى. وتحتوي المادةُ الأوليةُ المستخرجةُ منْ تلكَ الكائناتِ على عددٍ كبيرٍ منَ الموادِ المتنوعةِ على نطاقٍ واسع، بعضُها بسيطٌ والبعضُ الآخرُ أكثرُ تعقيدًا. وأولُ ما يجبُ على الكيميائيِّ فعلُه هوَ عزلُ الموادِّ التي يهتمُّ بها عنِ المادةِ المرادِ تحضيرِها في صورةٍ نقية. والخطوةُ التاليةُ، إنْ أمكنَ، هيَ تحديدُ هذهِ الموادِّ ومعرفةُ مما تتكونُ وكيفيةِ تركيبِها منْ مكوناتٍ بسيطة. حلُّ المشكلةِ الأولى، عزلِ المكونات، يمكنُ أنْ تكونَ صعبةً فعلًا، فمسألةُ استخراجِ موادَّ في حالةٍ نقيةٍ لا تمثلُ سوى جزءٍ صغيرٍ جدًّا منَ المادةِ الأولية. لذا؛ حظيتْ طريقةُ مارتن وسينج بنجاحٍ كبير، خاصةً فيما قدْ يكونُ أهمَّ أشكالِها، والذي يسمى كروماتوغرافيا ورقِ الترشيح. تخيلْ أنَّ لديكَ قلمَ تحديدٍ ملونًا ووضعتَ نقطةً منْ حبرِه على قطعةٍ منَ الورقِ الخاصِّ يُسمى ورقَ الترشيح. نقطةُ الحبرِ هذهِ تُشبهُ الخليطَ الذي تريدُ فصلَه. الآنَ، اغمسِ الجزءَ السفليَّ منَ الورقةِ في الماءِ واتركِ الماءَ ينتقلُ إلى أعلى الورقة. وعندما يتحركُ الماءُ إلى الأعلى فإنَّه يحملُ معَه الحبر.لكنَّ الحبرَ ليسَ مجردَ لونٍ واحد؛ فهوَ مكوَّنٌ منْ ألوانٍ مختلفةٍ ممزوجةٍ معًا. في أثناءِ تحرُّكِ الماء، قدْ ترى الحبرَ ينتشرُ أعلى ورقةِ الترشيحِ على شكلِ قوسِ قزحٍ منَ الألوان، إذْ تتحركُ بعضُ الألوانِ بشكلٍ أسرعَ منْ غيرِها. يحدثُ هذا لأنَّ كلَّ لونٍ في الحبرِ له "تقارُبٌ" مختلفٌ للمياهِ والورق. بعضُ الألوانِ تحبُّ أنْ تلتصقَ أكثرَ بالورق، لذا فهيَ تتحركُ بشكلٍ أبطأ. الألوانُ الأخرى تحبُّ الالتصاقَ معَ الماء، لذا فهيَ تتحركُ بشكلٍ أسرع. بحلولِ الوقتِ الذي يصلُ فيه الماءُ إلى أعلى الورقة، قدْ ترى أنَّ الألوانَ المختلفةَ انتشرتْ وشكلتْ بقعًا أوْ أشرطةً منفصلة. توضحُ لكَ هذهِ الأشرطةُ الألوانَ الموجودةَ في خليطِ الحبر. يبدو الأمرُ كما لوْ أنكَ قمتَ بفرزِ ألوانِ الحبرِ إلى مجموعاتٍ مختلفة. هذهِ بالضبطِ هيَ الطريقةُ التي ابتكرَها الثنائيُّ "مارتن" و"سينج" بنجاح. وهيَ طريقةٌ سهلةٌ للغاية؛ يمكنُ للمرءِ استخدامُها لإجراءِ تحليلٍ كاملٍ حتى للمخاليطِ الأكثرِ تعقيدًا؛ وقطرةٌ واحدةٌ منَ المادةِ الأوليةِ تكفي تمامًا لهذا الغرض.نوبل الكيمياء عام 1951.. عالَمُ ما بعدَ اليورانيوم
09:18|كانَ الجدولُ الدوري، ذلكَ الترتيبُ الأيقونيُّ للعناصرِ الكيميائية، يحملُ دائمًا جاذبيةَ المجهول، ويدعو العلماءَ لاستكشافِ عوالِمِ الموادِّ الكيميائية. منْ بينِ المناطقِ الأكثرِ إثارةً للاهتمامِ في الجدولِ الدوريِّ عناصرُ ما بعدَ اليورانيوم، وهوَ عالَمٌ منَ العناصرِ الاصطناعيةِ التي أسرَتْ عقولَ الكيميائيينَ والفيزيائيينَ على حدٍّ سواء. وعناصرُ ما بعدَ اليورانيوم، هيَ تلكَ العناصرُ التي تَزيدُ أعدادُها الذَّريةُ عنِ اثنينِ وتسعين. وعلى عكسِ نظيراتِها الموجودةِ في الطبيعة، فقدْ وُلدتْ هذهِ العناصرُ منْ براعةِ الإنسان، وتمَّ تصنيعُها بشِقِّ الأنفسِ منْ خلالِ تفاعلاتٍ نوويةٍ خاضعةٍ للرقابة. وبالتالي؛ فوجودُها العابرُ وخصائصُها الفريدةُ يقدمانِ لمحةً محيرةً عنِ الزوايا غيرِ المستكشَفةِ في الجدولِ الدوري. تطلَّبَ اكتشافُ تلكَ العناصرِ البراعةَ والمثابرةَ والفهمَ العميقَ للتفاعلاتِ النوويةِ وفيزياءِ الجسيمات. وقدْ شرعَ الباحثونَ في السعيِ للكشفِ عنِ الخصائصِ والسلوكِ والهياكلِ الذريةِ المعقدةِ لهذهِ العناصرِ طيلةَ سنين؛ وسلطتِ اكتشافاتُهمُ الضوءَ على الانتقالِ بينَ المعلومِ والمجهول، أوْ حدودِ الاستقرارِ الذريِّ وتعقيداتِ النوى الذرية. منْ ضمنِ العلماءِ الذينَ ساهمُوا في الكشفِ عنْ تلكَ العناصرِ : الأمريكيانِ "إدوين ماكميلان" و"غلين سيبورغ" اللذانِ حصلا على جائزةِ نوبل الكيمياءِ في عامِ ألفٍ وتِسعِمئةٍ وواحدٍ وخمسينَ بعدَ أنِ اقتحما ذلكَ العالَمَ الغامض.. عالَمَ ما بعدَ اليورانيوم.نوبل الكيمياء عامَ 1950.. سيمفونيةُ الروابطِ المزدوجة
10:01|في العصرِ الحديثِ للتقدمِ العلمي، برزتِ الكيمياءُ كنظامٍ أساسيٍّ يدعمُ الابتكاراتِ في مختلِفِ المجالات. في طليعةِ هذا المشهدِ الديناميكيِّ يكمنُ إنشاءُ موادَّ جديدة. أوْ موادَّ مصممةٍ بدقةٍ على المستوى الجزيئيِّ لإظهارِ خصائصَ ووظائفَ غيرِ مسبوقة. لقدْ مكنتِ الخطواتُ الرائعةُ في الكيمياءِ الباحثينَ منْ تسخيرِ الإمكانياتِ الكامنةِ للذراتِ والجزيئات، وتنظيمِها، عبرَ إجراءِ تفاعلاتٍ كيميائيةٍ دقيقة؛ لتصميمِ موادَّ ذاتِ سماتٍ مخصصةٍ تتجاوزُ حدودَ الموادِّ التي تحدثُ بشكلٍ طبيعي. أحدُ أعظمِ تلكَ التفاعلاتِ هوَ التفاعلُ الذي يحملُ اسمَ "ديلز- ألدر". يُعدُّ تفاعلُ "ديلز-ألدر" Diels-Alder حجرَ زاويةٍ في عالمِ الكيمياءِ العضوية، إذْ يسهِّلُ تخليقَ المركباتِ الحلقيةِ المعقدةِ بكفاءةٍ ملحوظة. تخيلْ أنَّ لديكَ نوعينِ منَ الجزيئات: أحدُهما عبارةٌ عنْ جزيءٍ قابلٍ للتمددِ معَ مسافاتٍ متناوبةٍ (أوْ روابطَ مزدوجة)، والآخرُ هوَ جزيءٌ يريدُ حقًّا المزيدَ منَ الإلكترونات. عندما يلتقي هذانِ الجزيئان، يشتركُ الجزيءُ المرنُ في سحابةِ الإلكترونِ معَ الجزيءِ الآخر. هذهِ المشاركةُ للإلكتروناتِ تجعلُها تلتصقُ بعضُها ببعض، وتشكلُ جزيئًا جديدًا يشبهُ الحلقة... هذا ببساطةٍ هوَ التفاعلُ الذي اكتشفَه العالِمانِ الحاصلانِ على جائزةِ نوبلِ الكيمياءِ لعامِ ألفٍ وتِسعِمئةٍ وخمسين. في أواخرِ عشرينياتِ القرنِ الماضي. أدى عملُ "أوتو ديلز" معَ تلميذِه "كورت ألدر" إلى تطويرِ أحدِ أهمِّ التفاعلاتِ وأكثرِها استخدامًا في الكيمياءِ العضوية. في عامِ ألفٍ وتِسعِمئةٍ وثمانيةٍ وعشرينَ، كانَ كلٌّ منْ "أوتو ديلز" و"كورت ألدر" يعملانِ كباحثَينِ في جامعةِ كيل الألمانية. يُحققانِ في تفاعلاتِ جزيئاتٍ تسمى "الديينات" dienes المقترنة؛ وهيَ جزيئاتٌ ذاتُ روابطَ مزدوجةٍ متبادلةٍ معَ بعضِ المركباتِ ذاتِ الروابطِ المزدوجة، والمعروفةِ باسمِ الألكينات. كانتْ هذهِ المركباتُ معروفةً جيدًا بتفاعُلِها، لكنَّ الآلياتِ الدقيقةَ لتفاعلاتِها لمْ تكنْ مفهومةً تمامًا في ذلكَ الوقت. وفي أبريل عامَ ألفٍ وتِسعِمئةٍ وثمانيةٍ وعشرين، اكتشفَ العالِمانِ تفاعلًا جديدًا يتضمنُ مركبَ "ديين" و"ألكين" ووجدُوا أنَّه في ظلِّ ظروفٍ معينة، يمكنُ أنْ تتفاعلَ هذهِ الجزيئاتُ معًا لتشكلَ مركبًا حلقيًّا جديدًا، وقدْ حدثَ هذا التفاعُلُ دونَ الحاجةِ إلى درجاتِ حرارةٍ عاليةٍ أوْ محفزاتٍ معقدة، وهوَ أمرٌ غيرُ معتادٍ في ذلكَ الوقت. كانَ ذلكَ الاختراقُ مهمًّا لأنَّه كشفَ عنْ نوعٍ جديدٍ منَ التفاعُلِ الكيميائيِّ لمْ يُشرَحْ بالكاملِ منْ خلالِ النظرياتِ الموجودةِ في ذلكَ اليوم. أدركَ "ديلز" و"ألدر" أنهما عثرا على عمليةٍ مهمةٍ بشكلٍ أساسيٍّ تضمنتْ تكوينَ روابطَ جديدةٍ متعددةٍ في خطوةٍ واحدة. لمْ يغيرِ اكتشافُهما لتفاعُلِ ديلز-ألدر مجالَ الكيمياءِ العضويةِ فحسب، بلْ فتحَ أيضًا إمكانياتٍ جديدةً لإنشاءِ جزيئاتٍ متنوعةٍ ذاتِ تطبيقاتٍ عمليةٍ في الطبِّ وعلومِ الموادِّ وما بعدَها.ففي مجالِ الكيمياءِ العضوية؛ قدمَ ذلكَ التفاعُلُ طريقةً جديدةً لتكوينِ مركباتٍ حلقية، وهيَ جزيئاتٌ ذاتُ حلقاتٍ في بنيتِها. كانَ هذا خروجًا كبيرًا عنِ الطرقِ التقليديةِ التي غالبًا ما تتطلبُ خطواتٍ متعددةً وكواشفَ معقدة. سمحتْ بساطةُ التفاعُلِ وكفاءتُه للكيميائيينَ بتجميعِ الجزيئاتِ العضويةِ المعقدةِ بسهولةٍ أكبر، مما أتاحَ التوسعَ السريعَ في معرفةِ الكيمياءِ العضوية.نوبل عام 1949.. الاقتراب من الصفر المُطلق
12:33|ينصُّ القانونُ الثالثُ للديناميكا الحرارية، المعروفُ أيضًا باسمِ نظريةِ "نيرنست" الحراريةِ على أنَّه منَ المستحيلِ الوصولُ إلى الصفرِ المطلقِ لدرجةِ الحرارةِ بأيِّ عددٍ محدودٍ منَ العمليات. بعبارةٍ أخرى، عندما يقتربُ النظامُ منَ الصفرِ المطلق، فإنَّ إنتروبيا النظامِ تقتربُ منَ الحدِّ الأدنى للقيمة، وغالبًا ما يتمُّ أخذُها على أنَّها صفر، ولا يمكنُ حدوثُ مزيدٍ منَ الانخفاضِ في الإنتروبيا. والصفرُ المطلقُ هوَ أدنى درجةِ حرارةٍ يمكنُ تحقيقُها نظريًّا والذي يعادلُ مِئتَينِ وثلاثًا وسبعينَ درجةً فاصلة خمسةَ عشَرَ تحتَ الصفرِ المئوي، حيثُ تتوقفُ كلُّ الحركةِ الجزيئية. لكنْ؛ وفي الحالةِ النظرية؛ فإنَّ إنتروبيا مادةٍ بلوريةٍ تمامًا عندَ الصفرِ المطلقِ ستساوي صفر. ففي مادةٍ متبلورةٍ تمامًا عندَ الصفرِ المطلق، يتمُّ ترتيبُ الذراتِ أوِ الجزيئاتِ في نمطٍ منتظمٍ محددٍ جيدًا حيثُ لا توجدُ طاقةٌ حراريةٌ متاحةٌ للتسببِ في أيِّ اهتزازاتٍ أوْ حركاتٍ للجسيمات، وبالتالي، يكونُ النظامُ في أدنى حالةِ طاقةٍ له معَ الحدِّ الأقصى منَ الترتيبِ والحدِّ الأدنى منَ الاضطراب. لكنْ؛ منَ المهمِّ أنْ نلاحظَ أنَّ تحقيقَ درجةِ حرارةٍ صفريةٍ مطلقةٍ أمرٌ مستحيلٌ عمليًّا، فالإنتروبيا الصفريةُ لمادةٍ متبلورةٍ تمامًا عندَ الصفرِ المطلقِ هيَ مفهومٌ مثاليٌّ يُستخدمُ في المناقشاتِ النظريةِ والحساباتِ في الديناميكا الحرارية. في الواقع، تحقيقُ الصفرِ المطلقِ غيرُ ممكنٍ بسببِ مبدأِ عدمِ إمكانيةِ الوصولِ للقانونِ الثالث. لكنْ؛ ماذا عنِ الاقترابِ منَ الصفرِ المطلق؟ قدمَ الفائزُ بجائزةِ نوبل الكيمياءِ لعامِ ألفٍ وتِسعِمئةٍ وتسعةٍ وأربعينَ "ويليام فرانسيس جيوك" أعظمَ مساهماتِه في الكيمياءِ بعدَ أنْ تمكنَ -منْ خلالِ المهارةِ التجريبيةِ الفائقة- منَ التغلبِ على العديدِ منَ الصعوباتِ الكبيرةِ التي يجبُ أنْ تكونَ متأصلةً في التحقيقاتِ حولَ سلوكِ الموادِّ عندَ الاقترابِ منَ الصفرِ المطلقِ بعدَ أنْ تمكنَ منِ ابتكارِ طريقتِه الخاصةِ المعروفةِ باسمِ التبريدِ المغناطيسيِّ والتي تغلبتْ على التقنياتِ السابقةِ الهادفةِ إلى الوصولِ إلى درجاتِ حرارةٍ أقربَ إلى الصفرِ المطلق.طورتْ دراساتُ "جيوك" بشكلٍ كبيرٍ فهمَنا للإنتروبيا، بعدَ أنْ أجرى تجاربَ دقيقةً لقياسِ تغيراتِ الإنتروبيا للموادِّ عندَ درجاتِ حرارةٍ منخفضة، ليقدمَ بحثُه رؤىً قيمةً حولَ سلوكِ المادةِ في الظروفِ القاسيةِ وهوَ الأمرُ الذي وسَّعَ معرفتَنا بالخصائصِ الديناميكيةِ الحراريةِ للمواد.كيفَ تمكنَ "جيوك" منَ الاقترابِ منَ الصفرِ المطلق؟ تعتمدُ طريقةُ "جيوك" على الموادِّ البارامغناطيسية، وهيَ مادةٌ تحتوي على إلكتروناتٍ غيرِ متزاوجةٍ وتنجذبُ بشكلٍ ضعيفٍ إلى مجالٍ مغناطيسي؛ مثلَ كبريتاتِ الجادولينيوم. في البدايةِ، تكونُ المادةُ البارامغناطيسيةُ في حالةٍ غيرِ مغناطيسيةٍ عندَ درجةِ حرارةٍ أعلى. يتمُّ تطبيقُ مجالٍ مغناطيسيٍّ قويٍّ على المادة، عبرَ محاذاةِ لفاتِ الإلكتروناتِ غيرِ المُزاوجةِ معَ اتجاهِ المجال. تؤدي المحاذاةُ إلى ارتفاعِ درجةِ حرارةِ المادةِ بسببِ زيادةِ طاقتِها المغناطيسية. بعدَ ذلك؛ تُعزلُ المادةُ البارامغناطيسيةُ حراريًّا عنْ محيطِها لضمانِ عدمِ تبادُلِ الحرارةِ معَ البيئةِ الخارجيةِ أثناءِ عمليةِ إزالةِ المغناطيسية، مما يجعلُها عمليةً ثابتةَ الحرارة؛ وبمجردِ عزلِها، يتمُّ تقليلُ المجالِ المغناطيسيِّ تدريجيًّا إما عنْ طريقِ تحريكِ المادةِ بعيدًا عنْ مصدرِ المجالِ المغناطيسيِّ أوْ عنْ طريقِ تقليلِ التيارِ المتدفقِ عبرَ الملفِّ الذي يولِّدُ المجال. معَ انخفاضِ المجال، يصبحُ دورانُ الإلكتروناتِ غيرِ المزاوجةِ أقلَّ محاذاةً معَ المجال. وعندَما ينخفضُ المجالُ المغناطيسي، تنخفضُ الطاقةُ المغناطيسيةُ للمادةِ البارامغناطيسيةِ أيضًا. وفقًا لقوانينِ الديناميكا الحرارية، يصاحبُ انخفاضَ الطاقةِ انخفاضٌ في درجةِ الحرارة. نتيجةً لذلك، تنخفضُ درجةُ حرارةِ المادة؛ ويمكنُ تكرارُ عمليةِ تقليلِ المجالِ المغناطيسيِّ ومراقبةُ انخفاضِ درجةِ الحرارةِ عدةَ مراتٍ لتحقيقِ درجاتِ حرارةٍ أقل. تؤدي كلُّ دورةٍ منْ إزالةِ المغناطيسيةِ الثابتةِ للحرارةِ إلى مزيدٍ منَ الانخفاضِ في درجةِ الحرارةِ حتى تصلَ المادةُ إلى درجةِ حرارةٍ قريبةٍ منَ الصفرِ المطلق. وحينَ تقتربُ المادةُ منَ الصفرِ المُطلق؛ تبدأُ في تقليلِ اهتزازاتِ الذرات؛ وتبدو ذراتُها مُرتبةً داخلَ بلوراتٍ شبهِ مثالية؛ ما يسمحُ للعلماءِ بدراستِها بصورةٍ أفضل.نوبل الكيمياء عامَ 1948.. فنُّ فصلِ مكوناتِ المصلِ المعقدة
11:45|حينَ تشعرُ بالعطش؛ وتملأُ كوبًا منَ الماء؛ قدْ يستدعي خيالُك أنَّ ما تشربُه منْ سائلٍ هوَ في الأساسِ غازانِ اثنان -هيدروجين وأكسجين- اتحدا معًا لتكوينِ ما يملأُ كوبَك ويروي عطشَك. عرفَ العلماءُ منذُ قرونٍ أنَّ معظمَ موادِّ الكونِ تتكونُ في الأساسِ منْ بضعةِ عناصرَ يتحدُ بعضُها معَ بعضٍ لتشكيلِ الوجود. وعرفُوا أيضًا أنَّ دراسةَ الوجودِ تبدأُ بتفكيكِه. في الكيمياء؛ يُعَدُّ فنُّ فصلِ مكوناتِ المركبات، المعروفُ أيضًا باسمِ التحليلِ الكيميائيِّ، ممارسةً أساسيةً للتحقيقِ المنهجيِّ وتحديدِ المكوناتِ أوِ الموادِّ المختلفةِ الموجودةِ داخلَ مركبٍ أوْ خليطٍ معين.وعبرَ العصور؛ تطورَ فنُّ فصلِ مكوناتِ المركبات، لكنْ لمْ تكنْ جهودُ الباحثينَ، في كثيرٍ منَ الحالات، قادرةً على فصلِ الموادِّ المكونةِ منْ جزيئاتٍ كبيرةٍ دونَ تغييرِ طبيعةِ هذهِ الجزيئاتِ في سياقِ التجارب. لذا؛ تركزَ اهتمامُ الباحثينَ في القرنِ العشرينَ على تفكيكِ تلكَ الموادِّ التي تؤدي دورًا كبيرًا في بيولوجيا أجسامِنا؛ منْ ضمنِ تلكَ الموادِّ كانتِ البروتيناتُ والبوليمراتُ الكربوهيدراتيةُ التي تؤدي دورًا رئيسيًّا في العملياتِ الحيوية؛ الأولُ في الحياةِ الحيوانية، والثاني في الحياةِ النباتية. ومنْ بينِها أيضًا الموادُّ الاصطناعية، بما في ذلكَ أنواعٌ مختلفةٌ منَ المطاطِ الصناعي، والموادِّ العازلة، والبلاستيك، والموادِّ المضغوطة، والمنسوجاتِ الجديدة، وغيرِها منَ المنتجاتِ التي تزدادُ أهميتُها العمليةُ يومًا بعدَ يوم.والآنَ؛ هناكَ العديدُ منَ التقنياتِ والمنهجياتِ المستخدمةِ في التحليلِ الكيميائيِّ، كلٌّ منها يناسبُ أنواعًا مختلفةً منَ المركباتِ والأهدافِ التحليلية، يمكنُ تصنيفُ هذهِ الأساليبِ على نطاقٍ واسعٍ إلى فئتينِ هما التحليلُ النوعيُّ والتحليلُ الكمِّي.ويركزُ التحليلُ النوعيُّ على تحديدِ وجودِ أوْ عدمِ وجودِ أنواعٍ كيميائيةٍ معينةٍ داخلَ العينة. يتضمنُ استخدامَ اختباراتٍ مختلفة، مثلَ تفاعلاتِ الألوان، أوْ تكوينِ الراسب، أوِ التحليلِ الطيفي، لتحديدِ طبيعةِ المكوناتِ الموجودة. يساعدُ التحليلُ النوعيُّ في التعرفِ على الموادِّ غيرِ المعروفة، وتأكيدِ وجودِ المركباتِ المرغوبة، أوِ الكشفِ عنِ الشوائب.منْ ناحيةٍ أخرى، يهدفُ التحليلُ الكمِّيُّ إلى تحديدِ التركيزِ الدقيقِ أوْ كميةِ مادةٍ معينةٍ داخلَ العينة. يتضمنُ ذلكَ تقنياتِ قياسٍ دقيقة، مثلَ المعايرةِ بالتحليلِ الحجمي، أوِ التحليلِ الطيفي، أوِ اللوني، أوْ قياسِ الطيفِ الكتلي، لتحديدِ كميةِ تحليلٍ معين. يُعَدُّ التحليلُ الكميُّ ضروريًّا في مختلِفِ المجالات، بما في ذلكَ المستحضراتُ الصيدلانيةُ والمراقبةُ البيئيةُ وعلومُ الطبِّ الشرعيِّ ومراقبةُ الجودةِ في الصناعات. وفي عام ألفٍ وتِسعِمئةٍ وثمانيةٍ وأربعينَ مُنحتْ جائزةُ نوبل في الكيمياءِ للعالِمِ "آرني تيسيليوس" لعامِ ألفٍ وتِسعِمئةٍ وثمانيةٍ وأربعينَ لأبحاثِه حولَ تطويرِ طريقتينِ جديدتينِ كُليًّا في التحليلِ الكيميائيِّ هما "الرحَلانُ الكهربائيُّ" و"الامتصاصُ" ما ساهمَ في اكتشافاتِه المتعلقةِ بالطبيعةِ المعقدةِ لبروتيناتِ المصل.نوبل الكيمياء عامَ 1947.. سرُّ الخشخاش
08:12|في عامِ ثلاثةِ آلافٍ وأربعِمئةٍ قبلَ الميلاد؛ زرعَ سكانُ جنوبِ غربِ آسيا الخشخاشَ ونقلُوه إلى السومريينَ الذينَ أطلقُوا عليهِ اسمَ "نباتِ الفرح". سرعانَ ما نقلَه السومريونَ إلى الآشوريينَ؛ الذينَ نقلُوه بدورِهم إلى المصريين. بدأَ المصريونَ القدماءُ في استكشافِ الخصائصِ الطبيةِ لتلكَ النباتات. لمْ يعرفُوا وقتَها أنَّ الخشخاشَ يحتوي على فئةٍ منَ المركباتِ العضويةِ التي تُعرفُ اليومَ باسمِ القلويداتِ والتي يُمكنُها أن تعالجَ مجموعةً واسعةً منَ الأمراض. ظلَّ البحثُ عنْ سرِّ تمكُّنِ منتجاتِ الخشخاشِ منْ معالجةِ الألمِ ممتدًّا لفترةٍ طويلةٍ قُدرتْ بأكثرَ منْ خمسةِ آلافِ عام، وخلالَ القرنِ التاسعَ عشَرَ، بدأَ العلماءُ في تعلُّمِ كيفيةِ عزلِ الموادِّ الفعالةِ في تلكَ النباتات، القلويدات، وكانَ التحقيقُ في كيميائياتِها مستمرًّا باهتمامٍ بلا هوادة. سرعانَ ما وجدَ العلماءُ أنَّ هذهِ القلوياتِ عادةً ما تكونُ معقدةً للغايةِ في التركيب؛ إذْ يحتوي جزيءُ المورفينِ على أربعينَ ذرة، ولكلٍّ منها مكانُها المحددُ بالنسبةِ للذراتِ الأُخرى... لمْ يستطعِ العلماءُ فهمَ البنيةِ العضويةِ المعقدةِ للقلويداتِ طيلةَ عقود. حتى كشفَ السير "روبرت روبنسون" عنِ السرِّ المخبأِ في أوراقِ الخشخاش؛ وغيرِها منَ النباتاتِ التي تحتوي على القلويدات. ليحصلَ على جائزةِ نوبل الكيمياءِ لعامِ ألفٍ وتِسعِمئةٍ وسبعةٍ وأربعينَ بعدَ أنْ تمكنَ منْ كشفِ الهياكلِ الكيميائيةِ للعديدِ منْ هذهِ القلويدات، بما في ذلكَ المورفين والإستركنين، بلْ وقامَ أيضًا بتصنيعِ العديدِ منها منْ موادَّ بسيطة. لكنْ.. ما هيَ القلويدات؟ وما هيَ أهميتُها؟ القلويداتُ هيَ مركباتٌ نشطةٌ بيولوجيًّا تُوجدُ في النباتات. تُظهِرُ نشاطًا دوائيًّا كبيرًا وتمَّ استخدامُها في الطبِّ التقليديِّ لعدةِ قرون. منْ خلالِ دراسةِ هيكلِها وتركيبِها الحيوي، يمكنُ للعلماءِ اكتسابُ نظرةٍ ثاقبةٍ على خصائصِها العلاجية، وآلياتِ عملِها. ساهمتِ اكتشافاتُ "روبنسون" في اكتشافِ عقاقيرَ جديدةٍ وتطويرِ علاجاتٍ أكثرَ فاعليةً لمختلِفِ الأمراضِ ترتكزُ على القلويدات. فمنْ خلالِ فهمِ هياكلِها ومساراتِ التخليقِ الحيوي، تمكنَ الباحثونَ منْ تعديلِ القلويداتِ وتحسينِها لإنشاءِ مرشحاتٍ جديدةٍ للأدويةِ ذاتِ الفاعليةِ المحسّنةِ أوِ الآثارِ الجانبيةِ المنخفضة. ولأنَّ القلويداتِ تؤدي أدوارًا متنوعةً في النباتات، وغالبًا ما تكونُ بمنزلةِ دفاعاتٍ كيميائيةٍ ضدَّ الحيواناتِ العاشبةِ أوْ مسبباتِ الأمراضِ أوِ الكائناتِ الحيةِ المنافسة؛ وفرَ اكتشافُ بنيتِها الكيميائيةِ دراسةَ آلياتِ التخليقِ الحيويِّ وتوزيعِ القلويداتِ عبرَ أنواعٍ نباتيةٍ مختلفةٍ نظرةً ثاقبةً على العلاقاتِ التطوريةِ بينَ الكائناتِ الحيةِ وتكيُّفِها معَ البيئة. ما ألقى بالضوءِ على التفاعُلاتِ البيئيةِ بينَ النباتاتِ والحيواناتِ والكائناتِ الحيةِ الدقيقة. ولمْ يكنِ اكتشافُ هياكلِ القلويداتِ إنجازَ "روبنسون" الوحيد. إذْ تشملُ المعالمُ البارزةُ الأخرى في مسيرةِ روبنسون اللامعةِ في الكيمياءِ العضويةِ توليفًا كاملًا للأصباغِ الحمراءِ والزرقاءِ المعقدةِ في الزهورِ والفواكهِ منْ موادَّ كيميائيةٍ أبسط، وربطَ بنيتِها بلونِها. كما كانَ روبنسون رائدًا في العملِ على تصنيعِ هرموناتٍ جنسيةٍ ثانوية، وخلقِ نسخٍ تركيبيةٍ منْ أدويةِ البنسلين والملاريا. كما أجابَ عنِ الأسئلةِ الأساسيةِ المتعلقةِ بالطريقةِ التي تغيرُ بها الإلكتروناتُ سالبةُ الشحنةِ ترتيبَها حولَ الذراتِ في أثناءِ التفاعلاتِ العضوية.
loading...