Partager

Choses à Savoir SCIENCES
Qui s'apprête à construire une centrale nucléaire sur la Lune ?
La Chine ! Ce pays révoit bien de construire une centrale nucléaire sur la Lune, en partenariat avec la Russie, dans le cadre de leur ambitieux projet commun baptisé ILRS (International Lunar Research Station). Ce projet, annoncé officiellement par l’ingénieur chinois Pei Zhaoyu en mai 2025, s’inscrit dans la continuité du programme lunaire chinois Chang’e et vise à établir une base lunaire habitée de façon permanente à l’horizon 2030, avec un réacteur nucléaire opérationnel d’ici 2035.
Pourquoi construire une centrale nucléaire sur la Lune ?
L’enjeu principal est l’approvisionnement énergétique. Sur la Lune, les nuits lunaires durent environ 14 jours terrestres, période pendant laquelle l’énergie solaire devient inutilisable. Les écarts de température extrêmes (-173 °C à +127 °C) rendent la production et le stockage d’énergie très complexes. Une centrale nucléaire, en revanche, permettrait de fournir une alimentation stable, continue et indépendante de l’environnement extérieur. Cela est indispensable pour maintenir en fonctionnement une station lunaire habitée, gérer les systèmes de survie, les communications, les laboratoires et les installations minières.
Un partenariat sino-russe fondé sur l'expérience
La Chine compte sur l’expertise de la Russie en matière de nucléaire spatial. L’Union soviétique a été pionnière en la matière dès les années 1960, avec plus de 30 réacteurs spatiaux envoyés en orbite. Le réacteur TOPAZ, utilisé dans les années 1980-90, est un exemple notable de système thermionique capable de produire de l’énergie électrique dans l’espace. Cette technologie, adaptée à l’environnement lunaire, pourrait servir de base au futur réacteur.
La mission Chang’e-8 comme tremplin
La mission Chang’e-8, prévue pour 2028, jouera un rôle stratégique. Elle embarquera des équipements pour tester les technologies clés nécessaires à une base permanente, notamment des modules d’habitat, des dispositifs de production d’oxygène et potentiellement un prototype de centrale nucléaire miniature. L’objectif est de valider sur place les concepts nécessaires à une présence humaine prolongée.
Une course énergétique… et géopolitique
Ce projet lunaire s’inscrit dans une concurrence technologique avec les États-Unis. Si la NASA, via son programme Artemis, prévoit également des bases lunaires, elle n’a pas encore officialisé de projet aussi avancé de centrale nucléaire. La Chine pourrait donc marquer un coup diplomatique et scientifique majeur si elle devient la première à installer un réacteur nucléaire sur un autre corps céleste.
En conclusion
Construire une centrale nucléaire sur la Lune n’est plus de la science-fiction : c’est un projet stratégique, technologique et symbolique, qui marque une nouvelle ère dans l’exploration spatiale — et dans la rivalité sino-américaine pour la domination au-delà de la Terre.
More episodes
View all episodes
Les gauchers sont-ils meilleurs en sport ?
01:50|La croyance populaire veut que les gauchers soient "meilleurs" en sport. La réalité scientifique est plus nuancée. Voici ce que disent les études :1. Les gauchers sont surreprésentés dans certains sportsUne méta-analyse de 2019 publiée dans Psychological Research (Loffing & Hagemann, 2019) montre que les gauchers sont bien plus nombreux que dans la population générale dans certains sports d’opposition où le temps de réaction est limité — par exemple en boxe, escrime, tennis de table ou baseball.Dans la population générale, les gauchers représentent environ 10 %.Dans ces sports-là, leur proportion grimpe parfois à 30-50 % chez les meilleurs niveaux.2. Pourquoi cet avantage ?Ce n’est pas que les gauchers sont plus "forts", mais qu’ils créent une asymétrie inattendue :La majorité des sportifs sont droitiers, donc s’entraînent surtout contre des droitiers.Quand ils affrontent un gaucher, ils sont moins préparés → effet de surprise.Le gaucher, lui, affronte en permanence des droitiers : il a donc développé des stratégies adaptées.Cela s'appelle l'avantage de fréquence négative : un avantage qui diminue si le nombre de gauchers augmente.3. Pas d’avantage physiologique globalAttention : aucune étude solide ne montre que les gauchers ont de meilleurs temps de réaction ou des capacités motrices supérieures en moyenne.Par exemple, une étude de 2021 dans Brain and Cognition (Peters et al.) montre que la latéralité manuelle n’influence pas de manière générale :la vitesse d’exécution,la précision,la coordination motrice.C’est donc bien un avantage contextuel, pas biologique.ConclusionScientifiquement, on ne peut pas dire que les gauchers sont "meilleurs en sport" de manière générale.Mais dans les sports d’opposition à fort enjeu temporel (boxe, escrime, tennis, baseball, tennis de table...), leur rareté leur procure un véritable avantage tactique — ce que les études confirment.Pourquoi certains métaux peuvent-ils avoir une barbe ?
02:40|Dans le monde de la science des matériaux, il existe un phénomène aussi fascinant que redouté : la "barbe métallique", ou "whisker" en anglais. Imaginez de minuscules filaments, semblables à des poils d’acier, qui se mettent à pousser spontanément à la surface de certains métaux ou alliages. Un phénomène discret, encore mal compris, mais qui peut provoquer des dégâts considérables dans l’industrie électronique.Ces fameuses barbes apparaissent principalement sur des métaux comme l’étain, le zinc, le cadmium, ou encore l’argent. Leur formation résulte d’un phénomène cristallographique complexe. Sous certaines conditions, le métal va littéralement faire pousser des filaments ultra-fins et longs, qui peuvent atteindre plusieurs millimètres, voire davantage.Mais comment cela se produit-il ? C’est là que le mystère commence. Les scientifiques pensent que ces barbes naissent d’un phénomène de contrainte interne dans le matériau. Lorsque le métal subit un stress mécanique, thermique ou chimique — par exemple après un dépôt de couche mince, un vieillissement ou une oxydation partielle — des déséquilibres se créent dans son réseau cristallin. Pour soulager ces contraintes, les atomes du métal migrent peu à peu vers la surface et s’assemblent en filaments, comme si le métal cherchait à "évacuer" son trop-plein d’énergie.Ce phénomène reste encore partiellement inexpliqué. On sait que l’humidité de l’air, les impuretés du métal ou les traitements de surface peuvent influencer la croissance des barbes, mais il n’existe pas encore de modèle prédictif universel. C’est un véritable casse-tête pour les ingénieurs en fiabilité des composants électroniques.Car si ces barbes métalliques peuvent paraître anecdotiques à l’œil nu, leurs conséquences sont bien réelles. Dans un circuit imprimé, par exemple, un filament d’étain peut traverser l’espace entre deux pistes conductrices et provoquer un court-circuit brutal. Des cas célèbres de défaillances de satellites, de systèmes militaires ou de télécommunications ont été attribués à ces minuscules barbes invisibles.Le problème s’est accentué depuis les restrictions sur l’utilisation du plomb dans les alliages électroniques. Autrefois, le plomb ajoutait une certaine souplesse et limitait la formation de whiskers dans les soudures à l’étain. Aujourd’hui, avec les alliages sans plomb, les ingénieurs redoublent de vigilance face à ce phénomène.En résumé, la "barbe métallique" est un exemple parfait de ces phénomènes discrets mais redoutables qui émergent dans le monde des matériaux. Une simple pousse de quelques microns… qui peut suffire à faire tomber un satellite en panne. La recherche continue pour mieux comprendre et contrôler cette étrange pilosité des métaux.Pourquoi le 15 juin 1785 est la date du premier accident aérien de l’Histoire ?
02:21|Ce jour-là, le ciel est clair au-dessus de Boulogne-sur-Mer, sur la côte nord de la France. Deux hommes se tiennent prêts à s’élever dans les airs, portés par un engin encore inconnu du grand public : un ballon hybride, à la fois rempli d’hydrogène et chauffé à l’air chaud. À bord, Jean-François Pilâtre de Rozier et son compagnon, Pierre Romain. Leur objectif ? Traverser la Manche par les airs, et rejoindre l’Angleterre. Un exploit jamais tenté dans ce sens.Pilâtre de Rozier n’est pas un inconnu. Deux ans plus tôt, il est devenu une légende vivante. En novembre 1783, il est le premier homme à s’élever dans les airs à bord d’une montgolfière, au-dessus de Paris. Ce jour-là, il avait prouvé que l’homme pouvait quitter le sol et flotter dans le ciel. Mais aujourd’hui, son rêve est plus grand encore : traverser la mer, montrer que l’aviation peut relier les nations.Pour cette tentative, il a conçu un ballon révolutionnaire : un "aéro-montgolfière", un engin aux deux sources de portance. En haut, une enveloppe gonflée d’hydrogène, un gaz très léger. En bas, une chambre chauffée à la manière d’une montgolfière classique. Une combinaison audacieuse… mais terriblement risquée. Car l’hydrogène est hautement inflammable, et le feu qui réchauffe le ballon n’est jamais bien loin.Le 15 juin, ils s’envolent. Lentement, le ballon s’élève, salué par la foule. Mais à peine une trentaine de minutes plus tard, alors qu’ils survolent encore la terre ferme, tout bascule. Le ballon vacille. Une fuite ? Une étincelle ? Nul ne sait précisément. Mais une chose est sûre : une explosion retentit. Le feu entre en contact avec l’hydrogène. L’enveloppe se déchire. Le ballon chute. Les deux hommes s’écrasent au sol. Il n’y a aucun survivant.Ainsi s’achève l’ultime vol de Pilâtre de Rozier. À 31 ans, il devient, avec Pierre Romain, la première victime d’un accident aérien de l’Histoire. Ce drame choque profondément l’Europe. Le rêve du vol humain vient d’entrer brutalement dans la réalité : celle du danger, du risque, de la limite humaine face à la technologie.Mais cet échec n’effacera pas sa légende. Pilâtre de Rozier restera à jamais l’un des pionniers du ciel. Il a prouvé que voler était possible. Et il est mort en poursuivant ce rêve.Comment de la glace peut-elle se former dans le noyau très chaud des planètes ?
02:14|L’idée paraît contre-intuitive : comment imaginer de la glace au cœur brûlant d’une planète géante comme Jupiter ou Neptune, où les températures atteignent plusieurs milliers de degrés ? Et pourtant, les scientifiques ont découvert qu’une forme particulière de glace pourrait bel et bien exister dans ces profondeurs extrêmes.Voyons pourquoi.Tout repose sur la physique de l’eau et sur un concept clé : le rôle de la pression.Nous avons l’habitude de penser que la glace se forme quand la température descend en dessous de 0 °C. Mais c’est vrai uniquement à pression atmosphérique normale. Dès que la pression augmente, le comportement de l’eau change radicalement.Dans l’intérieur des planètes géantes, la pression est colossale : plusieurs millions, voire des centaines de millions de fois la pression terrestre. Par exemple, dans le manteau de Neptune ou dans les couches profondes d’Uranus, on atteint facilement des pressions de l’ordre de 500 GPa (gigapascals), soit plus de 5 millions d’atmosphères.Or, à ces pressions, l’eau adopte des phases exotiques de glace, appelées glace VII, glace X, ou même des phases dites "superioniques", qui n’ont rien à voir avec la glace que nous connaissons.Prenons la glace superionique, récemment étudiée par des équipes comme celle du laboratoire Livermore en Californie :Dans cette phase, les atomes d’oxygène forment une structure cristalline fixe, rigide comme un solide. Mais les protons d’hydrogène, eux, restent mobiles, circulant à l’intérieur de ce réseau.Résultat : une "glace" qui est à la fois solide dans sa structure et partiellement fluide dans son comportement électrique — un état totalement inédit !Cette glace peut exister à des températures de plusieurs milliers de degrés Kelvin (jusqu’à 5 000 K), tant que la pression est suffisante.C’est ce qui explique pourquoi, même sous une chaleur intense, l’eau compressée en profondeur dans une planète peut rester sous forme de glace.Ces phases de glace ont des implications majeures :Elles pourraient influencer le champ magnétique des planètes.Elles jouent un rôle dans la convection interne.Elles expliquent partiellement les anomalies de densité observées par les sondes spatiales.Ainsi, dans l’univers des planètes géantes, la glace n’est pas forcément froide : elle est le produit d’un équilibre entre température et pression extrêmes.Un merveilleux exemple de la diversité des états de la matière dans le cosmos.Comment un poulet a-t-il survécu 18 mois sans tête ?
02:32|C’est une histoire qui semble sortie d’un conte absurde, et pourtant elle est bien réelle. En 1945, dans le Colorado, un jeune poulet baptisé Mike est devenu une curiosité scientifique : il a survécu 18 mois après sa décapitation.Le 10 septembre 1945, Lloyd Olsen, un fermier de Fruita, s’apprête à préparer un poulet pour le dîner. Il choisit un coq de 5 mois. Mais en portant son coup de hache, il vise légèrement trop haut. Résultat : une grande partie de la tête de Mike est tranchée, mais la base du crâne et surtout le tronc cérébral restent intacts.Et c’est là que réside toute l’explication scientifique de cette incroyable survie.Chez les oiseaux, le tronc cérébral — la partie inférieure du cerveau — contrôle de nombreuses fonctions automatiques vitales : la respiration, la fréquence cardiaque, la motricité réflexe.Dans le cas de Mike, ce tronc cérébral n’a pas été sectionné. Mieux encore : une partie de son cerveau moteur responsable des réflexes de base et de l’équilibre était également préservée.Résultat : bien que décapité, Mike pouvait tenir debout, marcher maladroitement, picorer, et même tenter de se lisser les plumes. Le sang ne s’étant pas écoulé massivement (une partie de l’artère carotide ayant été épargnée), il n’a pas succombé à une hémorragie.Constatant que le poulet refusait de mourir, le fermier décida de le nourrir en déposant un mélange de lait et d’eau directement dans son œsophage à l’aide d’une pipette. Il le nettoyait également régulièrement pour éviter les infections.La rumeur s’est répandue. Mike fut surnommé "Mike the Headless Chicken", et devint une véritable star des foires aux États-Unis. Des scientifiques fascinés se penchèrent sur son cas. Ils confirmèrent que la survie s’expliquait par :la préservation du tronc cérébral,une circulation sanguine suffisante,et l’instinct de survie puissant d’un animal à la physiologie très rudimentaire.Chez les poules, le cerveau est proportionnellement petit, et beaucoup de comportements de base sont contrôlés directement par la moelle épinière et le tronc cérébral, expliquant pourquoi Mike a pu continuer à vivre, se mouvoir… et même grossir !Mike vécut ainsi pendant 18 mois, avant de mourir accidentellement en 1947, probablement par étouffement dû à un mucus bloquant ses voies respiratoires.Cette histoire est aujourd’hui un cas d’école en neurosciences : elle illustre à quel point, chez certains animaux, les fonctions de survie sont décentralisées, et comment une partie infime du cerveau suffit à maintenir un organisme en vie.Pourquoi la Chine construit-elle un superordinateur dans l’espace ?
02:13|Le 14 mai 2025, la Chine a lancé depuis le centre spatial de Jiuquan les 12 premiers satellites d’un projet ambitieux : la création du premier superordinateur spatial au monde. Baptisée « Three-Body Computing Constellation », cette initiative vise à déployer une constellation de 2 800 satellites capables de traiter des données en orbite grâce à l’intelligence artificielle, sans dépendre des infrastructures terrestres. Une puissance de calcul inédite en orbiteChaque satellite est équipé d’un modèle d’IA de 8 milliards de paramètres, capable de réaliser jusqu’à 744 tera-opérations par seconde (TOPS). Ensemble, les 12 premiers satellites atteignent une capacité combinée de 5 péta-opérations par seconde (POPS), avec l’objectif d’atteindre 1 000 POPS une fois la constellation complète. Ces satellites communiquent entre eux via des liaisons laser à haut débit (jusqu’à 100 Gbps) et partagent 30 téraoctets de stockage. Ils sont également équipés de capteurs scientifiques, comme un polarimètre à rayons X pour détecter des phénomènes cosmiques tels que les sursauts gamma.Réduire la dépendance aux infrastructures terrestresTraditionnellement, les satellites collectent des données qu’ils transmettent ensuite aux stations au sol pour traitement. Cependant, cette méthode présente des limitations, notamment en termes de bande passante et de disponibilité des stations. En traitant les données directement en orbite, la constellation chinoise vise à surmonter ces obstacles, permettant une analyse en temps réel et réduisant la charge sur les infrastructures terrestres. Avantages énergétiques et environnementauxL’environnement spatial offre des conditions idéales pour les centres de données : une énergie solaire abondante et un vide spatial permettant une dissipation efficace de la chaleur. Cela pourrait réduire la consommation énergétique et l’empreinte carbone associées aux centres de données terrestres, qui sont de plus en plus sollicités par les applications d’IA. Une avancée stratégique majeureCe projet positionne la Chine à l’avant-garde de l’informatique spatiale, un domaine encore émergent. Alors que les États-Unis et l’Europe explorent également des solutions de calcul en orbite, la Chine semble prendre une longueur d’avance avec cette initiative à grande échelle. Cette avancée pourrait avoir des implications significatives dans les domaines économique, scientifique et militaire. En résumé, la Chine investit massivement dans l’informatique spatiale pour renforcer son autonomie technologique, accélérer le traitement des données et réduire son impact environnemental. Ce superordinateur orbital pourrait bien redéfinir les standards de l’informatique mondiale.L’Afrique est-elle en train de se déchirer ?
02:26|Cela fait maintenant plusieurs années que les géologues scrutent avec fascination un phénomène spectaculaire en Afrique de l’Est. On y observe en effet la lente ouverture du Rift est-africain, une immense fracture qui s’étire sur plus de 3000 kilomètres, du nord de l’Éthiopie jusqu’au sud du Malawi. À la surface, cela ressemble à une série de vallées, de failles, de volcans, de lacs allongés. Mais en réalité, ce que nous voyons n’est que la manifestation visible d’un gigantesque processus en profondeur.Comment expliquer ce phénomène ? A cause de la remontée de roches brûlantes venues du manteau terrestre, à plusieurs centaines de kilomètres sous nos pieds. Ce que les géologues appellent un panache mantellique. Cette colonne de roche partiellement fondue, plus chaude et plus légère que son environnement, pousse vers la surface, fragilisant la croûte terrestre.Grâce à l’imagerie sismique — une technique qui permet de "voir" l’intérieur de la Terre en analysant la propagation des ondes sismiques — les chercheurs ont mis en évidence cette anomalie thermique sous la région. Une étude parue en 2023 dans la revue Nature Geoscience a confirmé que le panache mantellique sous l’Afrique de l’Est était à l’origine de l’amincissement progressif de la croûte.Conséquence directe : la croûte terrestre se fissure, s’étire. En Éthiopie, au niveau de l’Afar, des failles béantes de plusieurs mètres de large sont apparues en quelques jours, suite à des épisodes de volcanisme et de séismes. En 2005, une fracture de 8 mètres de large s’était ainsi ouverte en quelques heures près du volcan Dabbahu.Mais ce processus est-il en train de casser le continent en deux ? À très long terme, oui. Le Rift est-africain est considéré comme une zone de rifting actif. Si le processus se poursuit pendant des millions d’années, il pourrait aboutir à la formation d’un nouvel océan. L’Afrique de l’Est se détacherait alors du reste du continent, comme cela s’est produit pour la mer Rouge.Pour l’instant, nous en sommes aux premiers stades de cette rupture tectonique. Le taux d’ouverture du Rift est de l’ordre de quelques millimètres par an. C’est lent à l’échelle humaine, mais rapide à l’échelle géologique.Ce phénomène nous rappelle que les continents sont loin d’être immobiles. Sous nos pieds, la Terre est en perpétuel mouvement, poussée par des forces colossales que nous commençons à peine à comprendre. L’Afrique de l’Est, quant à elle, nous offre un laboratoire naturel exceptionnel pour observer ce processus en direct.Pourquoi le colibri est-il le seul oiseau à pouvoir voler en reculant ?
02:18|Le colibri, ce minuscule oiseau aux reflets irisés, fascine les biologistes autant que les amoureux de la nature. Et pour cause : c’est le seul oiseau capable de voler en marche arrière. Mais comment un tel exploit est-il possible ? Et pourquoi lui seul en est capable ?Tout commence par une particularité de son anatomie. Contrairement aux autres oiseaux, le colibri possède des muscles pectoraux hyperdéveloppés : ils représentent près de 30 % de son poids total. Mais surtout, la structure de ses ailes est unique. Chez la majorité des oiseaux, l’articulation de l’épaule permet surtout un battement vers le bas, qui génère la portance nécessaire pour rester en l’air. En revanche, le colibri peut faire pivoter ses ailes à 180 degrés, réalisant un mouvement en forme de “8” horizontal.C’est ce battement si particulier qui lui permet de générer de la portance aussi bien vers l’avant que vers l’arrière. Lorsque le colibri veut reculer, il inverse simplement l’angle de ses ailes, modifiant l’orientation des forces aérodynamiques. Le résultat : il peut se déplacer en marche arrière avec une précision incroyable — un atout essentiel pour naviguer autour des fleurs.Mais ce vol à reculons n’est pas qu’un tour de magie. Il répond à un besoin vital. Le colibri se nourrit presque exclusivement de nectar de fleurs. Or, lorsqu’il plonge son long bec dans une corolle étroite, il doit pouvoir se dégager sans heurter la fleur ou perdre du temps. Le vol en marche arrière lui permet de reculer en douceur, prêt à passer à la fleur suivante. On estime qu’un colibri visite jusqu’à 1000 à 2000 fleurs par jour pour satisfaire ses besoins énergétiques énormes — il doit consommer l’équivalent de son poids en nectar toutes les 24 heures !Des études menées par l’Université de Californie à Berkeley ont filmé les colibris en vol ralenti et mesuré la dynamique de leurs ailes. Résultat : le vol en marche arrière est aussi stable et économe en énergie que le vol en avant — un exploit que même les drones modernes peinent à égaler.Pourquoi les autres oiseaux ne le font-ils pas ? Parce qu’ils n’en ont pas besoin. Leur style de vol est optimisé pour planer, battre des ailes en ligne droite ou se poser rapidement. Mais pour le colibri, maître du vol stationnaire et des manœuvres précises, reculer est un impératif évolutif.Ainsi, ce minuscule acrobate des airs rappelle que parfois, la nature avance… en reculant !Pourquoi le dessalement de l’eau de mer n'est pas généralisé ?
01:46|Face à la raréfaction de l’eau douce sur la planète, le dessalement de l’eau de mer semble une solution séduisante : après tout, les océans couvrent plus de 70 % de la surface terrestre. Pourtant, cette technologie reste peu développée à l’échelle mondiale. Pourquoi ?La première raison est énergétique. Dessaler l’eau de mer demande une quantité importante d’énergie. La méthode la plus courante aujourd’hui, l’osmose inverse, utilise des membranes sous haute pression pour filtrer le sel. Produire un mètre cube d’eau potable nécessite en moyenne entre 3 et 5 kWh. Cela reste beaucoup plus coûteux que le traitement de l’eau douce issue de nappes phréatiques ou de rivières.Or, dans de nombreux pays, cette énergie provient encore de sources fossiles. Résultat : les usines de dessalement émettent du CO₂, contribuant au changement climatique. Paradoxalement, en cherchant à compenser la pénurie d’eau, on alimente le réchauffement global qui aggrave justement cette pénurie.La deuxième limite est économique. Construire une usine de dessalement coûte cher : plusieurs centaines de millions d’euros pour des unités de grande capacité. L’eau ainsi produite reste donc plus onéreuse pour les consommateurs. Ce modèle est viable pour des pays riches (comme Israël, les Émirats arabes unis ou l’Espagne), mais reste inaccessible pour de nombreuses régions du monde.Enfin, il y a la question de l’impact environnemental. Le processus de dessalement génère un sous-produit appelé saumure : une eau extrêmement concentrée en sel, souvent rejetée dans la mer. Cela crée des zones de forte salinité au large des usines, perturbant les écosystèmes marins. La faune benthique, les poissons, les coraux peuvent en souffrir.Une étude publiée en 2019 dans Science of the Total Environment a révélé que pour chaque litre d’eau douce produite, 1,5 litre de saumure est rejeté. Avec plus de 16 000 usines de dessalement en activité dans le monde, cela représente un enjeu écologique majeur.Certaines solutions émergent : valoriser la saumure en extrayant des minéraux (magnésium, lithium), ou la diluer avant rejet. Mais ces techniques restent coûteuses et complexes.En résumé, le dessalement n’est pas généralisé car il est énergivore, coûteux et impacte les milieux naturels. C’est un outil précieux dans certaines régions arides, mais pas une solution miracle. Mieux vaut en parallèle renforcer les économies d’eau, recycler les eaux usées, et protéger les ressources existantes. La clé réside dans une gestion globale et durable de l’eau.