Partager

Choses à Savoir SCIENCES
L'air est-il vraiment de plus en plus pollué ?
Plusieurs grandes villes enregistrent assez souvent des pics de pollution, qui entraînent la mise en place de mesures de prévention, comme la circulation alternée. Parfois, la pollution de l'air conduit aussi les communes à limiter la vitesse de circulation.
L'air que nous respirons serait-il donc de plus en plus pollué ? En fait, il semble que ce soit l'inverse. Du moins certaines données récentes sont-elles plutôt rassurantes à cet égard.
En effet, selon le Centre interprofessionnel technique d'études de la pollution atmosphérique (Citepa), les oxydes d'azote, ou Nox, surtout émises par les automobiles, ont tendance à baisser.
En 2022, elles ne s'élevaient plus qu'à 726 kilotonnes par an, soit une baisse de 4 % par rapport à l'année précédente. En 2021, au contraire, les NOx avaient progressé de plus de 2,5 %.
On observe la même tendance en ce qui concerne les particules fines. Ce redoutable agent polluant, lié aux activités industrielles et domestiques, mais aussi aux transports, serait responsable d'environ 40 000 décès par an chez les personnes de plus de 30 ans.
Or cette pollution serait également en recul. D'après les chiffres du Citepa, les particules fines auraient baissé de plus de 10 %, après avoir augmenté de près de 10 % l'année précédente.
Cet organisme s'est aussi livré à une étude approfondie des composants susceptibles de polluer l'air ambiant. Or, là aussi, le constat est plutôt optimiste. En effet, des éléments polluants, comme l'arsenic, le dioxyde de soufre ou encore le mercure, se retrouveraient moins souvent dans l'air que nous respirons.
En fait, plus de la moitié de ces composants potentiellement polluants auraient régressé d'au moins 50 % en un demi-siècle. Autrement dit, l'air est plus pur que dans les années 1970. Un résultat dû en partie à une réglementation plus exigeante.
Ces progrès expliquent donc qu'en termes de pollution, la France ait respecté les niveaux fixés par la Commission européenne pour 2016. Il sera sans doute plus difficile de tenir les objectifs européens pour 2030, qui sont plus ambitieux.
More episodes
View all episodes
Comment un poulet a-t-il survécu 18 mois sans tête ?
02:32|C’est une histoire qui semble sortie d’un conte absurde, et pourtant elle est bien réelle. En 1945, dans le Colorado, un jeune poulet baptisé Mike est devenu une curiosité scientifique : il a survécu 18 mois après sa décapitation.Le 10 septembre 1945, Lloyd Olsen, un fermier de Fruita, s’apprête à préparer un poulet pour le dîner. Il choisit un coq de 5 mois. Mais en portant son coup de hache, il vise légèrement trop haut. Résultat : une grande partie de la tête de Mike est tranchée, mais la base du crâne et surtout le tronc cérébral restent intacts.Et c’est là que réside toute l’explication scientifique de cette incroyable survie.Chez les oiseaux, le tronc cérébral — la partie inférieure du cerveau — contrôle de nombreuses fonctions automatiques vitales : la respiration, la fréquence cardiaque, la motricité réflexe.Dans le cas de Mike, ce tronc cérébral n’a pas été sectionné. Mieux encore : une partie de son cerveau moteur responsable des réflexes de base et de l’équilibre était également préservée.Résultat : bien que décapité, Mike pouvait tenir debout, marcher maladroitement, picorer, et même tenter de se lisser les plumes. Le sang ne s’étant pas écoulé massivement (une partie de l’artère carotide ayant été épargnée), il n’a pas succombé à une hémorragie.Constatant que le poulet refusait de mourir, le fermier décida de le nourrir en déposant un mélange de lait et d’eau directement dans son œsophage à l’aide d’une pipette. Il le nettoyait également régulièrement pour éviter les infections.La rumeur s’est répandue. Mike fut surnommé "Mike the Headless Chicken", et devint une véritable star des foires aux États-Unis. Des scientifiques fascinés se penchèrent sur son cas. Ils confirmèrent que la survie s’expliquait par :la préservation du tronc cérébral,une circulation sanguine suffisante,et l’instinct de survie puissant d’un animal à la physiologie très rudimentaire.Chez les poules, le cerveau est proportionnellement petit, et beaucoup de comportements de base sont contrôlés directement par la moelle épinière et le tronc cérébral, expliquant pourquoi Mike a pu continuer à vivre, se mouvoir… et même grossir !Mike vécut ainsi pendant 18 mois, avant de mourir accidentellement en 1947, probablement par étouffement dû à un mucus bloquant ses voies respiratoires.Cette histoire est aujourd’hui un cas d’école en neurosciences : elle illustre à quel point, chez certains animaux, les fonctions de survie sont décentralisées, et comment une partie infime du cerveau suffit à maintenir un organisme en vie.Pourquoi la Chine construit-elle un superordinateur dans l’espace ?
02:13|Le 14 mai 2025, la Chine a lancé depuis le centre spatial de Jiuquan les 12 premiers satellites d’un projet ambitieux : la création du premier superordinateur spatial au monde. Baptisée « Three-Body Computing Constellation », cette initiative vise à déployer une constellation de 2 800 satellites capables de traiter des données en orbite grâce à l’intelligence artificielle, sans dépendre des infrastructures terrestres. Une puissance de calcul inédite en orbiteChaque satellite est équipé d’un modèle d’IA de 8 milliards de paramètres, capable de réaliser jusqu’à 744 tera-opérations par seconde (TOPS). Ensemble, les 12 premiers satellites atteignent une capacité combinée de 5 péta-opérations par seconde (POPS), avec l’objectif d’atteindre 1 000 POPS une fois la constellation complète. Ces satellites communiquent entre eux via des liaisons laser à haut débit (jusqu’à 100 Gbps) et partagent 30 téraoctets de stockage. Ils sont également équipés de capteurs scientifiques, comme un polarimètre à rayons X pour détecter des phénomènes cosmiques tels que les sursauts gamma.Réduire la dépendance aux infrastructures terrestresTraditionnellement, les satellites collectent des données qu’ils transmettent ensuite aux stations au sol pour traitement. Cependant, cette méthode présente des limitations, notamment en termes de bande passante et de disponibilité des stations. En traitant les données directement en orbite, la constellation chinoise vise à surmonter ces obstacles, permettant une analyse en temps réel et réduisant la charge sur les infrastructures terrestres. Avantages énergétiques et environnementauxL’environnement spatial offre des conditions idéales pour les centres de données : une énergie solaire abondante et un vide spatial permettant une dissipation efficace de la chaleur. Cela pourrait réduire la consommation énergétique et l’empreinte carbone associées aux centres de données terrestres, qui sont de plus en plus sollicités par les applications d’IA. Une avancée stratégique majeureCe projet positionne la Chine à l’avant-garde de l’informatique spatiale, un domaine encore émergent. Alors que les États-Unis et l’Europe explorent également des solutions de calcul en orbite, la Chine semble prendre une longueur d’avance avec cette initiative à grande échelle. Cette avancée pourrait avoir des implications significatives dans les domaines économique, scientifique et militaire. En résumé, la Chine investit massivement dans l’informatique spatiale pour renforcer son autonomie technologique, accélérer le traitement des données et réduire son impact environnemental. Ce superordinateur orbital pourrait bien redéfinir les standards de l’informatique mondiale.L’Afrique est-elle en train de se déchirer ?
02:26|Cela fait maintenant plusieurs années que les géologues scrutent avec fascination un phénomène spectaculaire en Afrique de l’Est. On y observe en effet la lente ouverture du Rift est-africain, une immense fracture qui s’étire sur plus de 3000 kilomètres, du nord de l’Éthiopie jusqu’au sud du Malawi. À la surface, cela ressemble à une série de vallées, de failles, de volcans, de lacs allongés. Mais en réalité, ce que nous voyons n’est que la manifestation visible d’un gigantesque processus en profondeur.Comment expliquer ce phénomène ? A cause de la remontée de roches brûlantes venues du manteau terrestre, à plusieurs centaines de kilomètres sous nos pieds. Ce que les géologues appellent un panache mantellique. Cette colonne de roche partiellement fondue, plus chaude et plus légère que son environnement, pousse vers la surface, fragilisant la croûte terrestre.Grâce à l’imagerie sismique — une technique qui permet de "voir" l’intérieur de la Terre en analysant la propagation des ondes sismiques — les chercheurs ont mis en évidence cette anomalie thermique sous la région. Une étude parue en 2023 dans la revue Nature Geoscience a confirmé que le panache mantellique sous l’Afrique de l’Est était à l’origine de l’amincissement progressif de la croûte.Conséquence directe : la croûte terrestre se fissure, s’étire. En Éthiopie, au niveau de l’Afar, des failles béantes de plusieurs mètres de large sont apparues en quelques jours, suite à des épisodes de volcanisme et de séismes. En 2005, une fracture de 8 mètres de large s’était ainsi ouverte en quelques heures près du volcan Dabbahu.Mais ce processus est-il en train de casser le continent en deux ? À très long terme, oui. Le Rift est-africain est considéré comme une zone de rifting actif. Si le processus se poursuit pendant des millions d’années, il pourrait aboutir à la formation d’un nouvel océan. L’Afrique de l’Est se détacherait alors du reste du continent, comme cela s’est produit pour la mer Rouge.Pour l’instant, nous en sommes aux premiers stades de cette rupture tectonique. Le taux d’ouverture du Rift est de l’ordre de quelques millimètres par an. C’est lent à l’échelle humaine, mais rapide à l’échelle géologique.Ce phénomène nous rappelle que les continents sont loin d’être immobiles. Sous nos pieds, la Terre est en perpétuel mouvement, poussée par des forces colossales que nous commençons à peine à comprendre. L’Afrique de l’Est, quant à elle, nous offre un laboratoire naturel exceptionnel pour observer ce processus en direct.Pourquoi le colibri est-il le seul oiseau à pouvoir voler en reculant ?
02:18|Le colibri, ce minuscule oiseau aux reflets irisés, fascine les biologistes autant que les amoureux de la nature. Et pour cause : c’est le seul oiseau capable de voler en marche arrière. Mais comment un tel exploit est-il possible ? Et pourquoi lui seul en est capable ?Tout commence par une particularité de son anatomie. Contrairement aux autres oiseaux, le colibri possède des muscles pectoraux hyperdéveloppés : ils représentent près de 30 % de son poids total. Mais surtout, la structure de ses ailes est unique. Chez la majorité des oiseaux, l’articulation de l’épaule permet surtout un battement vers le bas, qui génère la portance nécessaire pour rester en l’air. En revanche, le colibri peut faire pivoter ses ailes à 180 degrés, réalisant un mouvement en forme de “8” horizontal.C’est ce battement si particulier qui lui permet de générer de la portance aussi bien vers l’avant que vers l’arrière. Lorsque le colibri veut reculer, il inverse simplement l’angle de ses ailes, modifiant l’orientation des forces aérodynamiques. Le résultat : il peut se déplacer en marche arrière avec une précision incroyable — un atout essentiel pour naviguer autour des fleurs.Mais ce vol à reculons n’est pas qu’un tour de magie. Il répond à un besoin vital. Le colibri se nourrit presque exclusivement de nectar de fleurs. Or, lorsqu’il plonge son long bec dans une corolle étroite, il doit pouvoir se dégager sans heurter la fleur ou perdre du temps. Le vol en marche arrière lui permet de reculer en douceur, prêt à passer à la fleur suivante. On estime qu’un colibri visite jusqu’à 1000 à 2000 fleurs par jour pour satisfaire ses besoins énergétiques énormes — il doit consommer l’équivalent de son poids en nectar toutes les 24 heures !Des études menées par l’Université de Californie à Berkeley ont filmé les colibris en vol ralenti et mesuré la dynamique de leurs ailes. Résultat : le vol en marche arrière est aussi stable et économe en énergie que le vol en avant — un exploit que même les drones modernes peinent à égaler.Pourquoi les autres oiseaux ne le font-ils pas ? Parce qu’ils n’en ont pas besoin. Leur style de vol est optimisé pour planer, battre des ailes en ligne droite ou se poser rapidement. Mais pour le colibri, maître du vol stationnaire et des manœuvres précises, reculer est un impératif évolutif.Ainsi, ce minuscule acrobate des airs rappelle que parfois, la nature avance… en reculant !Pourquoi le dessalement de l’eau de mer n'est pas généralisé ?
01:46|Face à la raréfaction de l’eau douce sur la planète, le dessalement de l’eau de mer semble une solution séduisante : après tout, les océans couvrent plus de 70 % de la surface terrestre. Pourtant, cette technologie reste peu développée à l’échelle mondiale. Pourquoi ?La première raison est énergétique. Dessaler l’eau de mer demande une quantité importante d’énergie. La méthode la plus courante aujourd’hui, l’osmose inverse, utilise des membranes sous haute pression pour filtrer le sel. Produire un mètre cube d’eau potable nécessite en moyenne entre 3 et 5 kWh. Cela reste beaucoup plus coûteux que le traitement de l’eau douce issue de nappes phréatiques ou de rivières.Or, dans de nombreux pays, cette énergie provient encore de sources fossiles. Résultat : les usines de dessalement émettent du CO₂, contribuant au changement climatique. Paradoxalement, en cherchant à compenser la pénurie d’eau, on alimente le réchauffement global qui aggrave justement cette pénurie.La deuxième limite est économique. Construire une usine de dessalement coûte cher : plusieurs centaines de millions d’euros pour des unités de grande capacité. L’eau ainsi produite reste donc plus onéreuse pour les consommateurs. Ce modèle est viable pour des pays riches (comme Israël, les Émirats arabes unis ou l’Espagne), mais reste inaccessible pour de nombreuses régions du monde.Enfin, il y a la question de l’impact environnemental. Le processus de dessalement génère un sous-produit appelé saumure : une eau extrêmement concentrée en sel, souvent rejetée dans la mer. Cela crée des zones de forte salinité au large des usines, perturbant les écosystèmes marins. La faune benthique, les poissons, les coraux peuvent en souffrir.Une étude publiée en 2019 dans Science of the Total Environment a révélé que pour chaque litre d’eau douce produite, 1,5 litre de saumure est rejeté. Avec plus de 16 000 usines de dessalement en activité dans le monde, cela représente un enjeu écologique majeur.Certaines solutions émergent : valoriser la saumure en extrayant des minéraux (magnésium, lithium), ou la diluer avant rejet. Mais ces techniques restent coûteuses et complexes.En résumé, le dessalement n’est pas généralisé car il est énergivore, coûteux et impacte les milieux naturels. C’est un outil précieux dans certaines régions arides, mais pas une solution miracle. Mieux vaut en parallèle renforcer les économies d’eau, recycler les eaux usées, et protéger les ressources existantes. La clé réside dans une gestion globale et durable de l’eau.Qu'est-ce que le “pistolet de soleil” des nazis ?
02:59|Dans les années 1920 et 1930, Hermann Oberth, pionnier allemand de l’astronautique et mentor de Wernher von Braun, imagine un concept d’arme révolutionnaire pour l’époque : le « pistolet de soleil » Une arme qui fait partie d'un plan très sérieux mis en place par le régime nazi et découvert en 1945.L’idée, à mi-chemin entre science et science-fiction, repose sur un principe physique bien réel : la concentration de l’énergie solaire à l’aide de miroirs paraboliques. Le but ? Créer une arme spatiale capable de vaporiser des cibles terrestres à distance.Principe scientifiqueLe concept s’appuie sur les lois de l’optique géométrique, en particulier la capacité d’un miroir parabolique à concentrer les rayons parallèles (comme ceux du Soleil) en un point focal. Si l’on place un objet à ce point, il peut être chauffé à des températures extrêmement élevées.Oberth propose alors d’utiliser un miroir géant placé en orbite terrestre, orientable et capable de concentrer les rayons solaires sur un point précis de la surface terrestre. La surface du miroir, selon ses estimations, pourrait atteindre 100 km², construite en feuilles métalliques réfléchissantes assemblées dans l’espace. L’énergie concentrée suffirait, selon lui, à enflammer des villes entières, faire fondre des blindages ou neutraliser des installations stratégiques.Réalisation technique envisagéePour stabiliser la structure dans l’espace, Oberth imagine l’utiliser en orbite géostationnaire, c’est-à-dire à environ 35 786 km d’altitude, où l’engin resterait fixe par rapport à un point au sol. Le système devrait inclure un mécanisme d’orientation motorisée, probablement électromagnétique, pour diriger précisément le faisceau thermique. Les matériaux réfléchissants envisagés à l’époque étaient des feuilles d’aluminium ou de métaux brillants, fixées à une structure tubulaire en titane ou en acier léger.Limites physiques et critiquesPlusieurs obstacles rendent cette arme irréalisable avec les technologies du XXe siècle (et largement encore aujourd’hui) :Mise en orbite : placer des centaines de tonnes de matériaux à une telle altitude dépasserait de loin les capacités de lancement de l’époque.Précision : viser un point sur Terre depuis l’espace avec une structure aussi massive poserait des problèmes de stabilité thermique, de guidage et de dérive orbitale.Diffusion atmosphérique : les rayons concentrés traversant l’atmosphère perdraient une grande partie de leur énergie à cause de la diffusion Rayleigh et de l’absorption infrarouge, rendant l’effet au sol bien moins destructeur que prévu.Héritage scientifiqueSi le "pistolet de soleil" ne fut jamais construit, son concept a inspiré plusieurs recherches en énergie solaire concentrée, ainsi que des œuvres de science-fiction. Il est considéré comme l’un des tout premiers projets théoriques d’arme orbitale. Aujourd’hui encore, l’idée soulève des débats sur les applications civiles ou militaires de l’énergie solaire spatiale.Pourquoi est-il encore impossible de prévoir les séismes ?
02:37|Prévoir un séisme avec précision — c’est-à-dire en déterminer l’heure exacte, l’endroit précis et la magnitude — est aujourd’hui quasiment impossible sur le plan scientifique. Cette limitation tient à la nature même des failles géologiques, aux lois de la physique des matériaux et aux limites technologiques actuelles. Voici pourquoi.1. Le comportement chaotique des faillesLes séismes sont provoqués par des ruptures soudaines le long de failles dans la croûte terrestre, dues à l’accumulation progressive de contraintes tectoniques. Ces contraintes s’exercent sur des décennies ou des siècles, jusqu’à ce qu’un seuil de rupture soit atteint.Le problème, c’est que le comportement des failles est chaotique : des failles géologiquement similaires peuvent produire des séismes très différents. Même si la tension accumulée semble importante, la rupture peut ne pas se produire, ou au contraire survenir sur une autre faille voisine. Cela rend les modèles déterministes inopérants.2. L’absence de signes précurseurs fiablesContrairement à d’autres phénomènes naturels, les séismes ne présentent pas de signes précurseurs universels et fiables. Certains événements isolés — comme des microséismes, des variations du niveau des nappes phréatiques ou des émissions de radon — ont été observés avant certains tremblements de terre. Mais ces phénomènes ne se produisent pas systématiquement, ou bien se produisent aussi sans séisme, ce qui rend leur valeur prédictive nulle.Les scientifiques parlent donc plutôt de probabilités à long terme, en étudiant les vitesses de glissement des plaques, les historiques sismiques et les propriétés des roches. Cela permet d’établir des zones à risque élevé, mais pas de prévoir un séisme à court terme.3. Les limites des instruments de mesureMême les réseaux de sismographes les plus denses ne permettent pas aujourd’hui de détecter précisément où une rupture va commencer, ni de capter les signaux annonciateurs en temps réel. À l’échelle de la croûte terrestre, la résolution spatiale des capteurs reste insuffisante pour repérer les micro-fractures précurseures d’une rupture majeure.Des technologies comme l’interférométrie radar (InSAR) ou le GPS haute fréquence permettent de mesurer la déformation des sols, mais elles donnent des résultats utiles après coup, ou seulement dans le cadre de modélisations de long terme.4. Une prédiction, oui, mais après le début du séismeIl existe un domaine où la prédiction fonctionne partiellement : l’alerte précoce. Lorsqu’un séisme commence, les ondes primaires (P), peu destructrices, précèdent les ondes secondaires (S), plus lentes et dangereuses. En captant les premières, certains systèmes (comme au Japon ou au Mexique) peuvent envoyer une alerte de quelques secondes à quelques dizaines de secondes, permettant de se mettre à l’abri ou de stopper des trains. Mais ce n’est pas une prédiction — c’est une réaction ultra-rapide à un événement déjà en cours.ConclusionPrédire un séisme avec précision reste hors de portée de la science actuelle, en raison de la complexité des failles, du manque de signaux fiables et des limites technologiques. Les chercheurs concentrent donc leurs efforts sur l’évaluation probabiliste des risques et les systèmes d’alerte rapide, bien plus efficaces pour sauver des vies que la recherche du « moment exact ».Pourquoi vivre près d'un golf triple les risques de développer la maladie de Parkinson ?
02:08|Une étude publiée en mai 2025 dans la revue JAMA Network Open, menée par le Barrow Neurological Institute et la Mayo Clinic, a révélé une association significative entre la proximité des terrains de golf et un risque accru de développer la maladie de Parkinson.Méthodologie de l'étudeLes chercheurs ont analysé les données de 419 patients atteints de la maladie de Parkinson et de 5 113 témoins appariés, issus du Rochester Epidemiology Project, couvrant une période de 1991 à 2015. Ils ont examiné la distance entre le domicile des participants et les terrains de golf, ainsi que la nature de leur approvisionnement en eau potable.Résultats principauxLes personnes résidant à moins d'un mile (environ 1,6 km) d'un terrain de golf présentaient un risque accru de 126 % de développer la maladie de Parkinson par rapport à celles vivant à plus de six miles.Le risque diminuait progressivement avec l'éloignement du terrain de golf, suggérant une relation dose-réponse.Les individus vivant dans des zones desservies par des systèmes d'eau potable alimentés par des nappes phréatiques situées sous des terrains de golf avaient un risque presque doublé de développer la maladie, comparé à ceux vivant dans des zones sans terrain de golf.Hypothèses explicativesLes terrains de golf sont souvent entretenus avec des quantités importantes de pesticides pour maintenir la qualité des pelouses. Aux États-Unis, l'utilisation de pesticides sur les terrains de golf peut être jusqu'à 15 fois supérieure à celle observée en Europe. Ces substances chimiques peuvent s'infiltrer dans les nappes phréatiques, contaminant ainsi l'eau potable des zones avoisinantes.De plus, certaines zones géologiques, comme celles avec des sols perméables ou des formations karstiques, facilitent la migration des pesticides vers les sources d'eau souterraines.Limites de l'étudeBien que l'étude établisse une association entre la proximité des terrains de golf et un risque accru de maladie de Parkinson, elle ne prouve pas une relation de cause à effet. Les chercheurs n'ont pas mesuré directement les niveaux de pesticides dans l'eau potable ni pris en compte d'autres facteurs environnementaux ou génétiques pouvant influencer le risque.Cette étude souligne l'importance de considérer les facteurs environnementaux, tels que l'utilisation intensive de pesticides sur les terrains de golf, dans l'évaluation des risques de maladies neurodégénératives comme la maladie de Parkinson. Des recherches supplémentaires sont nécessaires pour confirmer ces résultats et élaborer des recommandations de santé publique appropriées.Pourquoi le nouveau canon japonais est-il une révolution ?
02:43|Le canon électromagnétique, aussi appelé railgun, est une arme qui utilise l’électromagnétisme pour propulser des projectiles à très haute vitesse, sans utiliser de poudre ou d’explosif chimique. C’est un concentré de physique appliquée, et sa présentation récente par le ministère de la Défense du Japon confirme l’intérêt croissant pour cette technologie futuriste.Comment ça fonctionne ?Un canon électromagnétique repose sur deux principes physiques fondamentaux :La loi de Lorentz : lorsqu’un courant électrique traverse un conducteur dans un champ magnétique, une force est générée, qui peut être utilisée pour mettre un objet en mouvement.L’induction magnétique : en générant un champ magnétique intense, on peut créer un mouvement mécanique dans un circuit conducteur.Concrètement, voici les éléments clés :Le projectile (non explosif) est placé entre deux rails conducteurs parallèles, d’où le nom « railgun ».Un courant électrique de très haute intensité (plusieurs millions d’ampères) est envoyé dans l’un des rails, traverse le projectile (conducteur) et repart par l’autre rail.Cette circulation crée un champ magnétique puissant perpendiculaire au courant, ce qui génère une force de Lorentz qui pousse le projectile à des vitesses pouvant atteindre Mach 6 à Mach 7 (environ 7 400 km/h).Pourquoi c’est révolutionnaire ?Pas de poudre, pas d’explosif : le projectile est inertiel, ce qui réduit les risques de stockage et d’explosion à bord des navires ou des bases.Vitesse extrême : la vitesse de sortie du projectile rend inutile l’usage d’explosifs ; l’énergie cinétique seule suffit à détruire la cible.Précision et portée : avec une trajectoire tendue et une vitesse très élevée, un railgun pourrait frapper une cible à plus de 200 km, voire plus à terme.Moins coûteux par tir que des missiles guidés, une fois la technologie maîtrisée.Les défis techniquesAlimentation électrique : il faut générer des courants immenses très rapidement. Cela nécessite des condensateurs géants ou des générateurs spécialisés.Usure des rails : les forces électromagnétiques et les frottements endommagent rapidement les rails. Leur durabilité est encore un point faible.Refroidissement : les décharges électriques chauffent énormément les matériaux. Il faut gérer les contraintes thermiques.Et le Japon dans tout ça ?Le Japon a présenté en mai 2025 un prototype opérationnel capable de tirer à plus de Mach 6, monté sur une base mobile. Il s'agit d’une première mondiale en matière de mobilité pour ce type d’arme. L’objectif affiché est de contrer les missiles hypersoniques et les menaces aériennes avancées, notamment en mer de Chine.ConclusionLe canon électromagnétique est à la croisée de l’ingénierie militaire et de la science pure. Il promet une révolution dans les systèmes d’armement… mais reste freiné par des obstacles techniques majeurs. Le Japon, en le présentant comme arme défensive avancée, rejoint les États-Unis et la Chine dans une nouvelle course à l’innovation militaire.