Partager

Choses à Savoir SCIENCES
Comment notre cerveau distingue-t-il un prénom dans le brouhaha ?
Imaginez une soirée animée : verres qui s’entrechoquent, conversations qui s’entrecroisent, musique de fond. Au milieu de ce vacarme, vous discutez tranquillement avec quelqu’un. Soudain, à l’autre bout de la pièce, quelqu’un prononce votre prénom. Comme par magie, vous l’entendez distinctement, alors même que vous n’écoutiez pas cette conversation. Ce phénomène a un nom en psychologie cognitive : l’effet cocktail party.
Décrit pour la première fois dans les années 1950 par le psychologue britannique Colin Cherry, cet effet illustre la capacité sélective de notre attention auditive. Dans un environnement saturé de sons, notre cerveau parvient à “faire le tri” et à se concentrer sur une seule source d’information — par exemple, la personne qui nous parle. Pourtant, il ne coupe pas totalement les autres bruits : il continue à scanner l’environnement sonore à la recherche de signaux pertinents, comme notre prénom, une alerte ou une voix familière.
Derrière ce tour de force, il y a les mécanismes d’attention sélective. Deux grands modèles ont été proposés pour les expliquer. Le premier, dit du “filtre précoce”, suppose que notre cerveau bloque très tôt les informations jugées non pertinentes. Le second, celui du “filtre tardif”, suggère que nous traitons un grand nombre de stimuli de manière inconsciente, mais que seuls les plus significatifs franchissent la barrière de la conscience. Le fait que nous puissions entendre notre prénom dans le bruit donne plutôt du poids à cette seconde hypothèse.
Les neurosciences modernes confirment que des régions comme le cortex auditif et les aires préfrontales travaillent main dans la main pour gérer cet équilibre subtil : écouter activement un interlocuteur tout en restant en alerte. Des études en imagerie cérébrale montrent par exemple que certaines aires du cerveau s’activent spécifiquement quand un mot hautement pertinent — comme notre nom — apparaît dans le flux sonore.
L’effet cocktail party a aussi des implications pratiques. Dans les open spaces ou les environnements bruyants, il explique pourquoi la concentration est si difficile : notre attention, sans cesse sollicitée, se détourne au moindre stimulus pertinent. Les chercheurs s’en servent également pour comprendre les troubles de l’attention ou encore améliorer les appareils auditifs, afin qu’ils parviennent à isoler une voix dans le brouhaha.
En somme, l’effet cocktail party révèle un paradoxe fascinant : notre cerveau est capable d’ignorer une masse d’informations pour se concentrer… tout en restant assez vigilant pour capter immédiatement ce qui pourrait nous concerner directement. Une preuve éclatante que l’attention humaine n’est pas seulement un faisceau, mais un radar discret toujours en marche.
More episodes
View all episodes

Pourquoi observe-t-on davantage d’accouchements la nuit que le jour ?
02:03|Ce phénomène est bien documenté et concerne surtout les accouchements spontanés, c’est-à-dire non déclenchés médicalement. La raison principale est biologique : le corps féminin est naturellement programmé pour accoucher plus facilement pendant la nuit.Le premier élément clé est le rythme circadien, notre horloge biologique interne. Cette horloge régule de nombreuses fonctions physiologiques sur un cycle de vingt-quatre heures, notamment la sécrétion hormonale. Or, plusieurs hormones essentielles au travail de l’accouchement atteignent leur pic durant la nuit.L’hormone la plus importante dans ce processus est l’ocytocine. Elle est responsable des contractions utérines qui permettent la dilatation du col et la naissance du bébé. La production d’ocytocine augmente naturellement la nuit, car elle est inhibée par le stress, la lumière et certaines hormones de l’éveil, comme le cortisol. La nuit, l’environnement est plus calme, plus sombre, et l’organisme est moins stimulé. Les freins hormonaux diminuent, ce qui rend les contractions plus efficaces et plus régulières.Une autre hormone joue un rôle crucial : la mélatonine, souvent appelée hormone du sommeil. Elle est sécrétée en grande quantité dans l’obscurité. Des études ont montré que la mélatonine agit en synergie avec l’ocytocine, en renforçant l’intensité et la coordination des contractions utérines. Autrement dit, la mélatonine ne favorise pas seulement le sommeil, elle participe aussi activement au bon déroulement de l’accouchement.Ce phénomène s’explique également par l’évolution. Pendant la majeure partie de l’histoire humaine, accoucher la nuit offrait un avantage en termes de survie. L’obscurité réduisait l’exposition aux prédateurs, l’activité du groupe était moindre et les conditions étaient plus propices au calme et à la concentration. Le corps humain a conservé cette programmation biologique ancestrale.Enfin, il est important de préciser que cette tendance est aujourd’hui atténuée par la médicalisation des naissances. Les déclenchements programmés et les césariennes planifiées ont déplacé une partie des accouchements vers la journée. Mais lorsque le travail débute spontanément, sans intervention médicale, la physiologie naturelle continue de privilégier la nuit.En résumé, si les femmes accouchent plus souvent la nuit, c’est parce que leur horloge biologique, leurs hormones et leur héritage évolutif s’alignent pour faire de la nuit le moment le plus favorable à la naissance.
Que se passerait-il si la Terre cessait soudainement de tourner ?
02:06|D’abord, rappelons un chiffre : à l’équateur, la surface de la Terre se déplace à environ 465 m/s, soit 1 670 km/h. À Paris, c’est encore autour de 1 100 km/h. Cette vitesse n’est pas “une sensation” : c’est une énergie cinétique réelle, emmagasinée par tout ce qui est posé sur le sol — atmosphère, océans, bâtiments… et nous.1) La catastrophe immédiate : l’inertieSi la Terre s’arrêtait net, tout ce qui n’est pas solidement attaché au socle rocheux continuerait à avancer à sa vitesse actuelle, par inertie. Résultat :des vents supersoniques : l’atmosphère garderait sa vitesse, déclenchant des rafales capables de raser des continents ;les océans se déplaceraient aussi : des mégatsunamis balaieraient les côtes et progresseraient profondément dans les terres ;les objets, les véhicules et les humains seraient littéralement projetés vers l’est.Cette phase serait la plus meurtrière : une conversion brutale d’énergie de rotation en destruction mécanique.2) Le chaos géophysique : réorganisation de la planèteEnsuite, la Terre chercherait un nouvel équilibre. Aujourd’hui, la rotation crée un renflement équatorial : la Terre est plus large d’environ 21 km à l’équateur qu’entre les pôles. Sans rotation, ce renflement n’aurait plus de raison d’être. Le manteau et la croûte se réajusteraient lentement, mais cela impliquerait une forte activité tectonique :séismes massifs,volcanisme accru,redistribution des contraintes dans la lithosphère.3) L’eau migrerait vers les pôlesUn effet contre-intuitif : sans force centrifuge, les océans ne resteraient pas répartis comme aujourd’hui. Ils se dirigeraient davantage vers les pôles, formant deux énormes calottes océaniques, et laissant émerger de vastes zones près de l’équateur.4) Un jour durerait un an… ou presqueSans rotation, la “journée” n’existerait plus au sens habituel. Un point de la surface ferait face au Soleil pendant environ 6 mois, puis serait plongé dans la nuit pendant 6 mois. Les écarts de température deviendraient extrêmes :sur la face éclairée : échauffement intense,sur la face sombre : refroidissement massif, gel généralisé.5) Le champ magnétique se dérègleEnfin, le champ magnétique terrestre dépend en partie de la dynamique interne du noyau (effet dynamo). La rotation joue un rôle crucial dans l’organisation des mouvements conducteurs. Un arrêt brutal pourrait affaiblir fortement le champ magnétique, exposant davantage la surface aux particules solaires.Conclusion : arrêter la Terre, ce n’est pas seulement “supprimer l’alternance jour-nuit”. C’est libérer une énergie colossale, déchaîner l’atmosphère et les océans, et transformer durablement la géographie et le climat. Un arrêt… et le monde tel qu’on le connaît disparaît.
Comment les chiens apprennent-ils de nouveaux mots ?
02:20|Imaginez la scène : vous êtes dans votre salon, vous discutez avec quelqu’un, vous parlez d’un nouvel objet… et votre chien, tranquillement dans son panier, “enregistre” le mot. Quelques minutes plus tard, vous lui demandez d’aller chercher ce même objet… et il le trouve.Ça ressemble à de la magie. En réalité, c’est de la scienceUne étude publiée le 8 janvier 2026 dans la revue Science montre que certains chiens, très rares, sont capables d’apprendre de nouveaux mots sans être entraînés directement : simplement en observant et en écoutant les interactions humaines. Les chercheurs parlent d’un petit groupe particulier : les “Gifted Word Learners” — littéralement, des chiens “doués” pour l’apprentissage des mots. Ces chiens connaissent déjà beaucoup de noms d’objets, souvent des jouets. Certains en reconnaissent plus de 100 et, dans certains cas, plusieurs centaines. Le point clé : ils ne se contentent pas d’obéir à des ordres (“assis”, “au pied”). Ils comprennent des étiquettes verbales associées à des objets précis : “la balle bleue”, “le kangourou”, “la pizza”, etc.Comment apprennent-ils ?Dans l’expérience, les chercheurs ont testé 10 chiens GWL. Les propriétaires introduisaient deux jouets inconnus, mais selon deux méthodes :1. Apprentissage direct : le maître montre le jouet, répète son nom, joue.2. Écoute passive : le chien n’est pas sollicité. Deux humains discutent, manipulent le jouet, prononcent son nom… mais sans s’adresser au chien.Et là, résultat spectaculaire : après simple écoute, 7 chiens sur 10 ont retrouvé correctement les jouets lors du test. Leur performance atteignait environ 80–83%, très proche de l’apprentissage direct, mesuré autour de 90–92%.Pour réussir, le chien doit faire plusieurs opérations mentales complexes :prêter attention à une conversation humaine,repérer qu’un mot est le nom d’un objet,associer ce mot à un objet précis,mémoriser l’information,et la ressortir plus tard dans un autre contexte.C’est exactement un mécanisme que l’on observe aussi chez l’enfant : vers 18 mois, certains bébés apprennent des mots en “espionnant” les échanges des adultes. Pourquoi c’est important ?Cette découverte suggère que l’apprentissage des mots ne repose pas uniquement sur le langage humain, mais sur des compétences plus générales : attention sociale, mémoire, lecture des intentions.Et elle pose une question fascinante : après des millénaires aux côtés de l’homme, certains chiens auraient-ils développé une forme rare, mais réelle, de “pré-langage” social ?En bref : ces chiens ne parlent pas. Mais certains savent écouter… vraiment.
Qu’est-ce que le rasoir d’Alder ?
01:52|Le rasoir d’Alder est une règle de bon sens… qui coupe net les débats stériles. Son idée centrale tient en une phrase : si une affirmation ne peut pas être tranchée par l’observation ou l’expérience, alors elle ne vaut pas la peine d’être débattue.On l’appelle aussi, avec un humour très “scientifique”, « l’épée laser flamboyante de Newton » (Newton’s flaming laser sword). Cette formule a été popularisée au début des années 2000 par le mathématicien australien Mike Alder, notamment dans un essai publié en 2004.Et c’est précisément pour cela qu’on parle de rasoir d’Alder : comme pour le rasoir d’Occam, le concept porte le nom de la personne qui l’a formulé et rendu célèbre. Ce n’est pas Newton qui l’a inventé : Newton sert ici de clin d’œil dans le surnom. À noter d’ailleurs qu’on voit parfois “Adler” écrit par erreur, mais l’attribution correcte est bien Alder.Le rasoir d’Alder ne dit pas “c’est faux”. Il dit : “ce n’est pas un bon usage de notre temps de le disputer comme si on pouvait conclure.”Exemple : “Existe-t-il un univers parallèle exactement identique au nôtre, mais inaccessible à jamais ?” Peut-être. Mais si, par définition, aucune mesure ne peut le confirmer ou l’infirmer, alors le rasoir d’Alder conseille de ne pas transformer ça en bataille intellectuelle.C’est une invitation à déplacer la discussion vers des questions testables :Au lieu de débattre “l’intelligence est-elle une essence mystérieuse ?”, on peut demander “quels tests permettent de prédire des performances cognitives, et avec quelle fiabilité ?”Au lieu de “la conscience est-elle immatérielle ?”, on peut demander “quels corrélats neuronaux de l’expérience consciente peut-on mesurer ?”En ce sens, Alder est proche de l’esprit de Karl Popper et de la falsifiabilité : une proposition devient “scientifique” si on peut imaginer ce qui la rendrait fausse. Mais Alder va plus loin en mode pragmatique : si on ne peut pas trancher, ne gaspillons pas l’énergie à polémiquer.Attention : ce rasoir n’est pas une loi de la nature. Il peut être trop strict. Certaines questions paraissent non testables… jusqu’au jour où une nouvelle méthode les rend observables (c’est arrivé souvent dans l’histoire des sciences). Et puis, on peut aussi débattre de valeurs, d’éthique, de sens — sans “expérience” au sens strict.Conclusion : le rasoir d’Alder n’élimine pas les grandes questions. Il vous aide à repérer celles qui, pour l’instant, ne peuvent produire ni preuve ni progrès — juste des joutes verbales.
Deux personnes pourraient-elles repeupler la Terre ?
02:54|La question est fascinante, presque mythique : deux personnes seulement pourraient-elles repeupler la Terre après une catastrophe mondiale ? D’un point de vue scientifique, la réponse courte est non. Et la réponse longue est encore plus intéressante.Commençons par la génétique. Pour qu’une population soit viable à long terme, il faut une diversité génétique suffisante. Cette diversité permet d’éviter l’accumulation de mutations délétères, responsables de maladies graves, de stérilité ou de malformations. Avec seulement deux individus, toute la descendance serait issue de relations incestueuses, génération après génération. Très rapidement, les effets de la consanguinité extrême deviendraient catastrophiques.On appelle cela la dépression de consanguinité. Elle entraîne une baisse de la fertilité, une augmentation de la mortalité infantile et une vulnérabilité accrue aux maladies. Chez les humains, ces effets apparaissent dès les premières générations. Autrement dit, même si deux personnes pouvaient avoir des enfants, leurs petits-enfants et arrière-petits-enfants auraient de très fortes probabilités de ne pas survivre ou de ne pas se reproduire.Les biologistes utilisent souvent un concept appelé population minimale viable. Pour l’espèce humaine, les estimations varient selon les modèles, mais elles convergent vers un minimum de plusieurs milliers d’individus pour assurer une survie à long terme sans assistance technologique. Certains scénarios très optimistes évoquent quelques centaines d’individus, mais jamais deux.Il existe une règle empirique connue sous le nom de règle des 50/500. Elle suggère qu’il faut au moins 50 individus pour éviter une extinction immédiate due à la consanguinité, et environ 500 pour maintenir une diversité génétique stable à long terme. Même cette règle est aujourd’hui jugée trop optimiste pour les humains.Mais la génétique n’est pas le seul problème. Deux personnes devraient aussi assurer la survie matérielle : produire de la nourriture, élever des enfants, se protéger des maladies, transmettre des connaissances, maintenir des outils, et faire face aux accidents. Or une population minuscule est extrêmement vulnérable aux aléas : une infection, une blessure grave ou une complication lors d’un accouchement pourrait suffire à tout faire disparaître.Certains objecteront que la technologie pourrait aider. En théorie, des banques de gamètes, le clonage ou l’édition génétique pourraient augmenter artificiellement la diversité. Mais dans ce cas, on ne parle plus vraiment de “deux personnes”, mais d’un système technologique complexe préservant une population virtuelle.Enfin, les données de la paléogénétique sont claires : même lors des périodes où l’humanité a frôlé l’extinction, comme il y a environ 70 000 ans, la population humaine ne serait jamais descendue en dessous de quelques milliers d’individus.Conclusion : deux personnes ne pourraient pas repeupler la Terre. Le mythe est puissant, mais la biologie est implacable. Pour survivre, une espèce a besoin non seulement de reproduction, mais surtout de diversité, de résilience et de nombre.
Pourquoi les détecteurs d'IA ne sont-ils pas fiables ?
02:46|Depuis l’explosion des outils d’intelligence artificielle générative, une nouvelle promesse est apparue : celle des détecteurs d’IA, censés distinguer un texte écrit par un humain d’un texte produit par une machine. Ces outils sont désormais utilisés dans l’éducation, le journalisme ou le recrutement. Pourtant, d’un point de vue scientifique, leur fiabilité est profondément limitée. Et un exemple devenu célèbre l’illustre parfaitement : l’un de ces détecteurs a affirmé que la Déclaration d’Indépendance américaine de 1776 avait probablement été écrite par une IA.Pourquoi un tel non-sens est-il possible ? La réponse tient au fonctionnement même de ces détecteurs.La plupart des détecteurs d’IA reposent sur des analyses statistiques du langage. Ils mesurent des critères comme la “prévisibilité” des mots, la régularité syntaxique ou ce que l’on appelle la perplexité. Un texte est jugé “suspect” s’il semble trop fluide, trop cohérent ou trop régulier. Le problème est évident : un bon texte humain peut parfaitement présenter ces caractéristiques, en particulier s’il est formel, structuré ou rédigé avec soin.À l’inverse, un texte généré par une IA peut facilement échapper à la détection s’il est légèrement modifié, paraphrasé ou enrichi d’erreurs volontaires. En pratique, quelques changements stylistiques suffisent à faire basculer le verdict. Cela montre une première faiblesse majeure : ces outils détectent des styles, pas des auteurs.Deuxième problème fondamental : les IA génératives sont elles-mêmes entraînées sur d’immenses corpus de textes humains. Elles apprennent à imiter la façon dont les humains écrivent. Plus elles progressent, plus leurs productions se rapprochent des distributions statistiques du langage humain. Résultat : la frontière mathématique entre texte humain et texte artificiel devient floue, voire inexistante. D’un point de vue théorique, il n’existe aucun “marqueur universel” de l’écriture humaine.Troisième limite : les détecteurs sont souvent entraînés sur des données datées ou biaisées. Ils comparent un texte à ce que “ressemblait” une IA à un instant donné. Mais dès qu’un nouveau modèle apparaît, avec un style différent, la détection devient obsolète. C’est une course perdue d’avance : l’IA évolue plus vite que les outils censés la repérer.L’épisode de la Déclaration d’Indépendance est révélateur. Ce texte, rédigé au XVIIIᵉ siècle, est formel, très structuré, peu émotionnel et linguistiquement régulier. Exactement le type de style que les détecteurs associent — à tort — à une IA moderne. Cela prouve que ces outils confondent classicisme stylistique et artificialité.En résumé, les détecteurs d’IA ne sont pas scientifiquement fiables parce qu’ils reposent sur des heuristiques fragiles, qu’ils confondent forme et origine, et qu’ils tentent de résoudre un problème peut-être insoluble : distinguer deux productions qui obéissent aux mêmes lois statistiques. Leur verdict ne devrait jamais être considéré comme une preuve, mais au mieux comme un indice très faible, et souvent trompeur.
Les neutrinos sont-ils vraiment plus rapides que la lumière ?
03:04|En 2011, une annonce a fait l’effet d’une bombe dans le monde scientifique : des chercheurs affirmaient avoir mesuré des neutrinos allant plus vite que la lumière. Si cela avait été vrai, cela aurait remis en cause l’un des piliers de la physique moderne, hérité d’Albert Einstein. Mais que s’est-il réellement passé ? Et pourquoi parle-t-on encore aujourd’hui de l’expérience OPERA ?Commençons par les bases. Les neutrinos sont des particules extrêmement légères, presque sans masse, qui interagissent très peu avec la matière. Des milliards d’entre eux traversent votre corps chaque seconde sans que vous ne le sentiez. Ils sont produits en grande quantité dans les réactions nucléaires, comme celles du Soleil ou des accélérateurs de particules.L’expérience OPERA consistait à mesurer le temps de trajet de neutrinos envoyés depuis le CERN, près de Genève, jusqu’à un détecteur situé sous le massif du Gran Sasso, en Italie. Distance : environ 730 kilomètres. Objectif : vérifier que les neutrinos, comme prévu, se déplacent à une vitesse très proche de celle de la lumière, mais sans la dépasser.Or, surprise : les premières mesures indiquaient que les neutrinos arrivaient environ 60 nanosecondes trop tôt. Autrement dit, ils semblaient dépasser la vitesse de la lumière d’environ 0,002 %. Une différence minuscule, mais suffisante pour bouleverser toute la relativité restreinte, qui affirme qu’aucune information ni particule ne peut aller plus vite que la lumière dans le vide.Face à un résultat aussi extraordinaire, les chercheurs ont fait ce que la science exige : ils ont douté. Car en science, une découverte révolutionnaire impose un niveau de vérification exceptionnel. Très vite, d’autres équipes ont tenté de reproduire la mesure, tandis que les ingénieurs ont passé au crible chaque élément du dispositif.Et c’est là que l’explication est apparue. Deux problèmes techniques étaient en cause. D’abord, un câble à fibre optique mal connecté, qui introduisait un décalage dans la synchronisation des horloges. Ensuite, un oscillateur défectueux, utilisé pour mesurer le temps. Pris séparément, ces défauts semblaient insignifiants ; combinés, ils expliquaient parfaitement l’avance apparente des neutrinos.Une fois ces erreurs corrigées, les nouvelles mesures ont confirmé ce que la physique prédisait depuis un siècle : les neutrinos ne dépassent pas la vitesse de la lumière. Ils s’en approchent énormément, mais restent en dessous.Alors pourquoi cet épisode est-il important ? Parce qu’il montre la science en action. Les chercheurs n’ont pas caché un résultat dérangeant. Ils l’ont publié, soumis à la critique, testé, puis corrigé. OPERA n’a pas renversé Einstein, mais elle a rappelé une règle fondamentale : des résultats extraordinaires exigent des preuves extraordinaires.En résumé, non, les neutrinos ne sont pas plus rapides que la lumière. Mais l’expérience OPERA reste un excellent exemple de rigueur scientifique… et d’humilité face aux mesures.
Qu’est-ce que le principe de réfutabilité de Popper ?
02:53|Le principe de réfutabilité est l’une des idées les plus célèbres — et les plus mal comprises — de la philosophie des sciences. Il a été formulé au XXᵉ siècle par le philosophe Karl Popper, avec une ambition claire : définir ce qui distingue une théorie scientifique d’un discours qui ne l’est pas.À première vue, la science semble reposer sur la preuve. On pourrait croire qu’une théorie est scientifique parce qu’elle est confirmée par des expériences. Or, Popper renverse totalement cette intuition. Selon lui, aucune théorie scientifique ne peut jamais être définitivement prouvée vraie. Pourquoi ? Parce qu’une infinité d’observations positives ne garantit jamais que la prochaine ne viendra pas la contredire. En revanche, une seule observation contraire suffit à invalider une théorie.C’est là qu’intervient le principe de réfutabilité. Pour Popper, une théorie est scientifique si et seulement si elle peut, en principe, être réfutée par les faits. Autrement dit, elle doit faire des prédictions suffisamment précises pour qu’on puisse imaginer une expérience ou une observation qui la rende fausse. Si aucune observation possible ne peut la contredire, alors elle sort du champ de la science.Un exemple classique permet de comprendre. L’énoncé « tous les cygnes sont blancs » est réfutable : il suffit d’observer un seul cygne noir pour le contredire. À l’inverse, une affirmation comme « des forces invisibles et indétectables influencent secrètement le monde » n’est pas réfutable, puisqu’aucune observation ne peut la mettre en défaut. Elle peut être intéressante sur le plan philosophique ou symbolique, mais elle n’est pas scientifique.Popper utilise ce critère pour critiquer certaines théories très populaires à son époque, comme la psychanalyse ou certaines formes de marxisme. Selon lui, ces systèmes expliquent tout a posteriori, mais ne prennent jamais le risque d’être démentis par les faits. Quand une prédiction échoue, l’explication est ajustée, ce qui rend la théorie indestructible… et donc non scientifique.Ce point est fondamental : pour Popper, la science progresse par erreurs corrigées, non par accumulation de certitudes. Une bonne théorie n’est pas celle qui se protège contre la critique, mais celle qui s’expose volontairement à la possibilité d’être fausse. Plus une théorie est risquée, plus elle est scientifique.Aujourd’hui encore, le principe de réfutabilité structure la méthode scientifique moderne. Il rappelle que la science n’est pas un ensemble de vérités absolues, mais un processus critique permanent. Une théorie n’est jamais vraie pour toujours ; elle est simplement la meilleure disponible, tant qu’elle résiste aux tentatives de réfutation.En résumé, le principe de réfutabilité de Popper nous apprend une chose essentielle : en science, le doute n’est pas une faiblesse, c’est une condition de progrès.
Le sens de l’humour est-il héréditaire ?
02:34|Le sens de l’humour fait partie de ces traits que l’on aime attribuer à la personnalité, à l’éducation, ou à l’ambiance familiale. Mais une question intrigue depuis longtemps les chercheurs : sommes-nous génétiquement programmés pour avoir de l’humour… ou est-ce uniquement le produit de notre environnement ? Une étude publiée dans la revue scientifique Twin Research and Human Genetics apporte des éléments de réponse particulièrement éclairants.Pour étudier l’origine de traits psychologiques complexes, les scientifiques utilisent souvent une méthode classique : la comparaison entre jumeaux monozygotes, qui partagent 100 % de leur patrimoine génétique, et jumeaux dizygotes, qui n’en partagent qu’environ 50 %, comme de simples frères et sœurs. Si un trait est plus similaire chez les jumeaux identiques que chez les faux jumeaux, cela suggère une influence génétique.Dans cette étude, les chercheurs ont analysé plusieurs dimensions de l’humour : la capacité à produire des blagues, la sensibilité à l’humour des autres, et l’usage de l’humour dans les interactions sociales. Les participants devaient répondre à des questionnaires standardisés évaluant leur style humoristique et leur fréquence d’utilisation de l’humour au quotidien.Résultat principal : le sens de l’humour est partiellement héréditaire. Selon les analyses statistiques, environ 30 à 40 % des différences individuelles liées à l’humour peuvent être expliquées par des facteurs génétiques. Cela signifie que les gènes jouent un rôle réel, mais non dominant. Autrement dit, l’humour n’est ni totalement inné, ni purement acquis.Ce point est essentiel. La majorité de la variabilité observée — 60 à 70 % — est liée à l’environnement : la famille, la culture, l’éducation, les expériences de vie, mais aussi le contexte social. Grandir dans un milieu où l’humour est valorisé, pratiqué et encouragé compte donc davantage que l’ADN seul.Les chercheurs soulignent également que toutes les formes d’humour ne sont pas égales face à la génétique. Par exemple, l’humour affiliatif — celui qui sert à créer du lien social — semble plus influencé par l’environnement, tandis que certains traits cognitifs liés à la compréhension des jeux de mots ou de l’ironie pourraient avoir une composante génétique plus marquée, via des capacités comme la flexibilité mentale ou le langage.Enfin, cette étude rappelle un point fondamental en sciences du comportement : les gènes ne déterminent pas des comportements précis, mais des prédispositions. Avoir une base génétique favorable ne garantit pas d’être drôle, pas plus qu’en être dépourvu n’empêche de développer un excellent sens de l’humour.En conclusion, le sens de l’humour est bien en partie héréditaire, mais il se façonne surtout au fil des interactions, des cultures et des expériences. Une bonne nouvelle : même sans “gène de l’humour”, il reste largement… cultivable.