Partager

Choses à Savoir SCIENCES
Comment notre cerveau distingue-t-il un prénom dans le brouhaha ?
Imaginez une soirée animée : verres qui s’entrechoquent, conversations qui s’entrecroisent, musique de fond. Au milieu de ce vacarme, vous discutez tranquillement avec quelqu’un. Soudain, à l’autre bout de la pièce, quelqu’un prononce votre prénom. Comme par magie, vous l’entendez distinctement, alors même que vous n’écoutiez pas cette conversation. Ce phénomène a un nom en psychologie cognitive : l’effet cocktail party.
Décrit pour la première fois dans les années 1950 par le psychologue britannique Colin Cherry, cet effet illustre la capacité sélective de notre attention auditive. Dans un environnement saturé de sons, notre cerveau parvient à “faire le tri” et à se concentrer sur une seule source d’information — par exemple, la personne qui nous parle. Pourtant, il ne coupe pas totalement les autres bruits : il continue à scanner l’environnement sonore à la recherche de signaux pertinents, comme notre prénom, une alerte ou une voix familière.
Derrière ce tour de force, il y a les mécanismes d’attention sélective. Deux grands modèles ont été proposés pour les expliquer. Le premier, dit du “filtre précoce”, suppose que notre cerveau bloque très tôt les informations jugées non pertinentes. Le second, celui du “filtre tardif”, suggère que nous traitons un grand nombre de stimuli de manière inconsciente, mais que seuls les plus significatifs franchissent la barrière de la conscience. Le fait que nous puissions entendre notre prénom dans le bruit donne plutôt du poids à cette seconde hypothèse.
Les neurosciences modernes confirment que des régions comme le cortex auditif et les aires préfrontales travaillent main dans la main pour gérer cet équilibre subtil : écouter activement un interlocuteur tout en restant en alerte. Des études en imagerie cérébrale montrent par exemple que certaines aires du cerveau s’activent spécifiquement quand un mot hautement pertinent — comme notre nom — apparaît dans le flux sonore.
L’effet cocktail party a aussi des implications pratiques. Dans les open spaces ou les environnements bruyants, il explique pourquoi la concentration est si difficile : notre attention, sans cesse sollicitée, se détourne au moindre stimulus pertinent. Les chercheurs s’en servent également pour comprendre les troubles de l’attention ou encore améliorer les appareils auditifs, afin qu’ils parviennent à isoler une voix dans le brouhaha.
En somme, l’effet cocktail party révèle un paradoxe fascinant : notre cerveau est capable d’ignorer une masse d’informations pour se concentrer… tout en restant assez vigilant pour capter immédiatement ce qui pourrait nous concerner directement. Une preuve éclatante que l’attention humaine n’est pas seulement un faisceau, mais un radar discret toujours en marche.
More episodes
View all episodes

Lire ou écouter ? Comment apprend-on le mieux ?
02:35|Lire ou écouter : quelle méthode permet d’apprendre le mieux ? C’est une question ancienne, mais la science y apporte aujourd’hui des réponses précises. Plusieurs études en psychologie cognitive et neurosciences ont comparé les performances d’apprentissage selon que l’on lise un texte ou qu’on l’écoute sous forme audio.Une méta-analyse publiée en 2022, regroupant 46 études et près de 5 000 participants, montre que la différence moyenne entre lecture et écoute est faible. En termes de compréhension générale, les deux méthodes donnent des résultats similaires. Autrement dit, écouter un livre audio ou lire le même texte permet de retenir globalement la même quantité d’informations. Cependant, les chercheurs notent un léger avantage pour la lecture quand il s’agit de comprendre des détails complexes ou d’établir des liens logiques entre plusieurs idées. Lire permet en effet de contrôler son rythme, de revenir en arrière, de relire une phrase difficile : c’est un apprentissage plus actif.Les neurosciences confirment cette proximité : les zones cérébrales activées pendant la lecture et l’écoute d’un texte se recouvrent largement. Les deux sollicitent le cortex temporal et frontal, responsables du traitement du langage et de la compréhension. En revanche, la lecture implique aussi les régions visuelles, tandis que l’écoute sollicite davantage les aires auditives et émotionnelles. Autrement dit, le cerveau mobilise des chemins différents pour arriver au même but : comprendre.Mais l’efficacité dépend du contexte. Pour apprendre un contenu dense, technique ou nécessitant une mémorisation précise, la lecture reste légèrement supérieure : elle favorise la concentration et la consolidation en mémoire à long terme. En revanche, pour des contenus narratifs, motivationnels ou destinés à une écoute en mouvement (marche, transport, sport), l’audio est plus pratique et presque aussi performant.Une autre variable essentielle est l’attention. L’écoute est plus vulnérable aux distractions : un bruit extérieur, une notification ou un regard ailleurs suffit à rompre le fil. Lire, en revanche, impose un effort cognitif qui renforce la concentration — à condition d’être dans un environnement calme.Enfin, certaines études montrent qu’une combinaison des deux, lire et écouter simultanément, peut légèrement améliorer la rétention, notamment pour les apprenants visuels et auditifs.En résumé : lire et écouter activent des mécanismes très proches. La lecture garde un petit avantage pour la profondeur et la précision, tandis que l’écoute favorise la flexibilité et l’émotion. Le meilleur choix dépend donc moins du support que de l’objectif : apprendre en profondeur ou apprendre partout.
Pourquoi ne faut-il pas dormir avec la lumière allumée ?
02:23|Dormir avec la lumière allumée semble anodin, mais c’est en réalité un geste lourd de conséquences pour la santé. Une vaste étude publiée le 27 octobre 2025 dans la revue médicale JAMA Network Open vient de le confirmer : l’exposition à la lumière artificielle pendant la nuit augmente de 56 % le risque d’insuffisance cardiaque et de 47 % celui d’infarctus, par rapport aux nuits les plus sombres.Les chercheurs ont suivi plus de 89 000 adultes pendant presque dix ans. Chaque participant portait un capteur mesurant la lumière ambiante pendant le sommeil. En croisant ces données avec les dossiers médicaux, les scientifiques ont observé que ceux qui dormaient dans des chambres fortement éclairées développaient beaucoup plus souvent des maladies cardiovasculaires : infarctus, insuffisance cardiaque, fibrillation auriculaire ou accident vasculaire cérébral.Mais pourquoi la lumière la nuit est-elle si nocive ? Parce qu’elle perturbe notre horloge biologique, le fameux rythme circadien. Ce mécanisme interne régule la température du corps, la tension artérielle, le métabolisme et la production de mélatonine, l’hormone du sommeil. En présence de lumière, même faible, le cerveau interprète la situation comme une prolongation du jour : la sécrétion de mélatonine diminue, le rythme cardiaque augmente, la pression artérielle reste plus élevée et les processus de réparation cellulaire sont retardés. Sur le long terme, ces déséquilibres favorisent l’inflammation et l’usure du système cardiovasculaire.L’étude montre aussi que le problème ne vient pas seulement des lampes de chevet : l’écran de télévision allumé, la veille d’un téléphone ou d’un réveil, voire la pollution lumineuse extérieure peuvent suffire à dérégler le sommeil. À l’inverse, les personnes exposées à une forte lumière le jour, mais dormant dans l’obscurité totale la nuit, présentaient une meilleure santé cardiaque. Cela confirme que notre organisme a besoin d’un contraste marqué entre le jour lumineux et la nuit noire pour fonctionner correctement.Les chercheurs recommandent donc de dormir dans une pièce aussi sombre que possible : éteindre toutes les sources lumineuses, éviter les écrans avant le coucher, utiliser des rideaux opaques et des ampoules à lumière chaude si un éclairage est nécessaire.En résumé, laisser la lumière allumée la nuit n’affecte pas seulement la qualité du sommeil, mais augmente aussi le risque de maladies graves. Pour préserver son cœur, la meilleure habitude reste sans doute la plus simple : dormir dans le noir complet.
Pourquoi les TV ultra haute définition se servent-elles à rien ?
02:45|Le 27 octobre 2025, une étude publiée dans la revue Nature Communications a remis en question l’utilité réelle des télévisions ultra haute définition. Des chercheurs de l’Université de Cambridge et du laboratoire Meta Reality Labs ont voulu répondre à une question simple : notre œil humain perçoit-il vraiment la différence entre une image en 4K, 8K ou une résolution plus basse ? Leur conclusion est sans appel : au-delà d’un certain point, notre vision ne peut tout simplement plus distinguer les détails supplémentaires.Les écrans ultra HD se vantent d’afficher des millions de pixels supplémentaires – 8 millions pour la 4K, plus de 33 millions pour la 8K. En théorie, plus il y a de pixels, plus l’image semble nette. Mais en pratique, notre œil a une limite de résolution, mesurée en « pixels par degré de vision » (PPD). Cela représente combien de détails l’œil peut discerner dans un angle d’un degré. Dans leurs expériences, les chercheurs ont exposé des volontaires à des images aux contrastes et couleurs variables, et ont mesuré le point où la netteté cessait d’être perçue comme améliorée. Résultat : le seuil moyen était d’environ 90 PPD. Au-delà, les différences deviennent imperceptibles, même si l’écran affiche beaucoup plus d’informations.Prenons un exemple concret. Dans un salon typique, si vous êtes assis à 2,5 mètres d’un téléviseur de 110 centimètres de diagonale (environ 44 pouces), vous ne ferez pas la différence entre une image en 4K et en 8K. L’œil humain ne peut pas discerner autant de détails à cette distance. Pour vraiment profiter de la 8K, il faudrait soit un écran gigantesque, soit s’asseoir à moins d’un mètre – ce qui est peu réaliste pour regarder un film confortablement.Ces résultats soulignent une réalité simple : les gains de résolution vendus par les fabricants dépassent désormais les capacités biologiques de notre vision. Autrement dit, nous avons atteint un plafond perceptif. Acheter une TV 8K pour remplacer une 4K revient un peu à utiliser une loupe pour lire un panneau routier à un mètre de distance : la différence existe techniquement, mais votre œil ne la voit pas.Les chercheurs estiment qu’il serait plus utile d’améliorer d’autres aspects de l’image, comme la luminosité, le contraste, la fidélité des couleurs ou la fluidité des mouvements. Ces paramètres influencent beaucoup plus notre perception de la qualité qu’une hausse du nombre de pixels. En clair, la course à la résolution touche à sa fin : la vraie révolution de l’image ne viendra plus du nombre de points, mais de la manière dont ils sont rendus.
Connaissez-vous le “cristal temporel” ?
02:33|Un cristal temporel, c’est un peu comme un cristal ordinaire… mais qui se répète non pas dans l’espace, mais dans le temps. Dans un cristal classique – un diamant, un sel ou un flocon de neige – les atomes s’alignent selon un motif régulier, qui se répète dans les trois dimensions de l’espace. Dans un cristal temporel, le motif ne se répète pas dans l’espace, mais dans le temps : les particules reviennent périodiquement à la même configuration, comme si elles oscillaient sans jamais s’arrêter.Ce concept, proposé en 2012 par le physicien américain Frank Wilczek, défie notre intuition. Dans la physique classique, lorsqu’un système atteint son état fondamental – c’est-à-dire l’état d’énergie minimale – il est censé être au repos. Rien ne bouge. Mais dans un cristal temporel, même dans cet état stable, quelque chose continue à évoluer, à vibrer, à osciller à un rythme fixe, sans apport d’énergie extérieure. C’est ce qui rend le phénomène si fascinant : il semble créer un « mouvement éternel » sans violer les lois de la thermodynamique.Comment est-ce possible ? Parce que ces oscillations ne produisent pas d’énergie utile : elles ne constituent pas une machine à mouvement perpétuel. Ce sont des oscillations internes du système, dues à des interactions collectives entre particules. C’est un comportement purement quantique, qui n’a pas d’équivalent direct dans le monde macroscopique.Sur le plan théorique, les cristaux temporels brisent une symétrie fondamentale de la physique appelée « symétrie de translation temporelle ». En d’autres termes, les lois de la physique sont les mêmes aujourd’hui qu’elles le seront demain, mais un cristal temporel, lui, introduit une périodicité : son état se répète à intervalles réguliers. C’est une rupture de symétrie, un peu comme un cristal spatial brise la symétrie d’un liquide homogène.Depuis 2016, plusieurs expériences ont permis de créer de véritables cristaux temporels, notamment avec des ions piégés ou sur des processeurs quantiques. Ces systèmes, isolés de leur environnement et pilotés par des lasers ou des champs magnétiques, ont montré ces oscillations périodiques stables dans le temps.Pourquoi cela intéresse-t-il les chercheurs ? Parce que cette stabilité temporelle pourrait servir de base à de nouvelles formes de mémoire ou d’horloge pour les ordinateurs quantiques. Le cristal temporel est donc une nouvelle phase de la matière, étrange mais bien réelle, qui remet en question notre manière de penser le temps et le mouvement au niveau le plus fondamental.
Comment allumer un feu avec de la glace ?
02:18|Allumer un feu avec de la glace : l’idée semble absurde, presque magique. Et pourtant, c’est scientifiquement possible. Ce paradoxe repose sur un principe physique fondamental : la lumière du Soleil, concentrée par une lentille transparente, peut enflammer un matériau combustible. Et de la glace bien taillée peut justement servir de lentille.Pour comprendre, il faut d’abord rappeler comment fonctionne une loupe. Lorsqu’un rayon de Soleil traverse un milieu transparent de forme convexe – bombée vers l’extérieur –, il est dévié et concentré en un point précis : le foyer. À cet endroit, l’énergie lumineuse se transforme en chaleur, suffisante pour enflammer du papier, du bois sec ou de l’herbe. La glace peut jouer ce rôle, à condition d’être parfaitement claire et bien polie.Sur le terrain, la méthode demande une rigueur d’artisan. Il faut d’abord trouver de la glace très pure, idéalement issue d’eau claire gelée lentement. Ensuite, on la sculpte en forme de lentille biconvexe : épaisse au centre, plus fine sur les bords. Un morceau d’environ 5 à 7 centimètres d’épaisseur suffit. Puis on polit les faces avec les mains, un tissu ou un peu d’eau, jusqu’à ce qu’elles deviennent translucides comme du verre. Plus la glace est transparente, plus la lumière passera efficacement.Une fois la lentille prête, on l’oriente vers le Soleil, en tenant le morceau de glace à une vingtaine de centimètres d’un petit tas d’amadou : herbe sèche, coton, copeaux de bois. En ajustant la distance et l’angle, on cherche à concentrer la lumière sur un minuscule point lumineux. Là, la température peut grimper à plus de 150 °C, suffisante pour enflammer la matière. Le processus prend du temps : quelques minutes si la lentille est bien formée, parfois plus si la glace contient des bulles ou des impuretés.Cette technique, connue depuis longtemps des trappeurs et popularisée par des survivalistes, illustre parfaitement la puissance des lois optiques. Elle repose sur la réfraction : la déviation de la lumière lorsqu’elle traverse un milieu différent. La glace, comme le verre ou le cristal, plie les rayons et les concentre.Bien sûr, la réussite dépend des conditions : il faut un Soleil fort, une glace très claire et une température extérieure assez basse pour que la lentille ne fonde pas trop vite. Mais le principe reste fascinant : transformer un élément symbole du froid en source de feu. La nature, une fois de plus, prouve que ses lois n’ont rien d’illogique — seulement de surprenant.
Quelle sanglante méthode les Mayas utilisaient-ils pour conjurer la pluie ?
02:19|Au cœur de la péninsule du Yucatán, dissimulée dans la jungle, se trouve une grotte que les archéologues ont longtemps hésité à explorer. Son nom : la Cueva de Sangre, la « grotte ensanglantée ». Découverte dans les années 1990, elle vient de livrer de nouveaux secrets, présentés en avril 2025 lors de la convention annuelle de la Society for American Archaeology. Et ces révélations confirment ce que les anciens chroniqueurs redoutaient déjà : pour invoquer la pluie, les Mayas pratiquaient des rituels d’une violence inouïe.Une offrande pour les dieux de la pluieLes Mayas vivaient sous un climat contrasté, alternant saisons de sécheresse et pluies torrentielles. Or, leur survie dépendait entièrement de l’eau : sans pluie, pas de maïs, donc pas de vie. Pour apaiser Chaac, le dieu de la pluie, ils recouraient à un rituel qu’ils jugeaient sacré : le sacrifice humain. Dans la Cueva de Sangre, les fouilles ont mis au jour plus de 200 ossements humains, dont une grande majorité appartenant à des enfants et des adolescents.Les analyses isotopiques réalisées récemment montrent que ces jeunes victimes ne provenaient pas de la région immédiate : certains avaient parcouru des centaines de kilomètres avant d’être conduits jusqu’à la grotte. Cela suggère que la cérémonie avait une dimension politique et religieuse : un moyen pour les élites mayas de renforcer leur pouvoir tout en sollicitant la faveur des dieux.Un bain de sang sacréLes traces retrouvées sur les os racontent l’horreur du rituel. Les victimes étaient égorgées ou percées d’un coup de lame en obsidienne au niveau du thorax, probablement pour extraire le cœur encore battant. Les parois de la grotte portaient, selon les premiers explorateurs, des traces de pigments mêlés à du sang séché. Certains corps étaient déposés dans des bassins d’eau souterraine — des cénotes, considérés comme les passages entre le monde des hommes et celui des dieux.Un message venu du passéCes nouveaux résultats, issus d’analyses ADN et de datations au carbone 14, confirment que les sacrifices de la Cueva de Sangre se sont étalés sur plusieurs siècles, entre 900 et 1200 après J.-C., période de grande instabilité climatique dans la région. Les Mayas tentaient, littéralement, d’acheter la pluie par le sang.Aujourd’hui encore, la Cueva de Sangre demeure fermée au public, sanctuarisée pour des raisons éthiques et archéologiques. Mais ses vestiges rappellent un fait troublant : pour survivre, certaines civilisations ont cru devoir nourrir les dieux… de leur propre chair.
Quelle théorie pourrait redéfinir notre vision de l’évolution humaine ?
02:49|Dans une étude récente, les chercheurs Timothy Waring et Zachary Wood proposent une hypothèse audacieuse : l’évolution humaine entrerait dans une nouvelle phase, où ce n’est plus tant la génétique que la culture qui devient le principal moteur de notre adaptation. Le cœur de la théorieSelon Waring et Wood, nous assisterions à un basculement majeur : la transmission culturelle, qu’il s’agisse de techniques, d’institutions, de connaissances, prend désormais le pas sur la transmission génétique comme facteur fondamental de survie et de reproduction. Autrement dit : les gènes restent bien sûr importants… mais ce sont de plus en plus les systèmes culturels — l’éducation, la médecine, la technologie, les lois — qui déterminent si une personne ou un groupe peut prospérer. Pourquoi ce changement ?Plusieurs observations viennent étayer cette théorie :Dans le passé, l’évolution se faisait par de très longs processus génétiques : mutations, sélection, générations après générations.Aujourd’hui, on constate que les humains corrigent leurs handicaps via des technologies, vivent dans des environnements façonnés culturellement, et se transmettent des compétences et institutions à grande vitesse. Exemple : les lunettes corrigent la vue, la chirurgie permet de survivre à des affections mortelles, ce qui signifie que la sélection naturelle « pure » est moins décisive. Les systèmes culturels sont plus rapides : une innovation utile (par exemple, un protocole sanitaire, un procédé technologique) peut s’imposer en quelques années, là où une adaptation génétique prendra des millénaires. Waring et Wood estiment que cette rapidité donne à la culture un avantage adaptatif décisif. Quelles implications ?Les auteurs suggèrent que l’humanité pourrait évoluer vers quelque chose de plus groupal : les individus ne sont plus simplement des porteurs de gènes, mais font partie de systèmes culturels coopératifs, à même d’agir comme des super-organismes. En pratique, cela signifie que l’avenir évolutif de notre espèce dépendra peut-être davantage de la résilience et de l’innovation de nos sociétés culturelles que de notre bagage génétique. Il s’agit aussi d’un appel à penser l’évolution sous un angle nouveau : non plus seulement biologique, mais socioculturel, où l’environnement, les institutions, les technologies sont des facteurs d’adaptation à part entière.À noter toutefoisWaring et Wood ne prétendent pas que les gènes soient devenus inutiles ; leur théorie ne supprime pas la génétique mais la place dans un cadre plus large. De plus, ils insistent sur le fait que l’évolution culturelle n’est pas forcément « positive » ou morale : elle produire aussi des structures inégalitaires, des risques nouveaux et des trajectoires imprévues. En résumé, voilà une théorie qui change notre regard sur « ce que signifie être humain » : loin d’être figés dans nos gènes, nous serions en train de devenir des êtres davantage façonnés par les réseaux culturels, les institutions et la technologie. Si elle se confirme, cette vision pourrait bien redéfinir le futur de notre espèce.
Pourquoi de mystérieuses structures au large de Cuba intriguent-elles ?
02:23|En 2001, une équipe d’océanographes canadiens menée par Paulina Zelitsky et Paul Weinzweig, travaillant pour la société Advanced Digital Communications, réalise une découverte qui va bouleverser le monde scientifique : au large de la pointe occidentale de Cuba, leurs sonars détectent à 650 mètres de profondeur une série de structures géométriques parfaitement alignées. Des formes rectangulaires, des pyramides, des avenues entières semblent dessiner les contours d’une ville engloutie.À l’époque, les chercheurs effectuent plusieurs plongées robotisées. Les images sont saisissantes : blocs taillés, angles droits, surfaces planes évoquant des murs ou des routes. Tout semble indiquer une construction humaine, mais datée de plusieurs millénaires. Si l’hypothèse se confirmait, elle remettrait en cause notre chronologie de la civilisation, car aucune société connue n’aurait pu ériger une telle cité avant qu’elle soit engloutie par la mer.Les scientifiques baptisent le site “Mega”, du nom d’un programme de cartographie sous-marine cubano-canadien. Certains y voient la trace d’une cité perdue semblable au mythe de l’Atlantide décrit par Platon. D’autres évoquent un cataclysme datant de la fin de la dernière ère glaciaire, il y a environ 12 000 ans, lorsque la montée brutale des océans aurait englouti des régions côtières entières. Mais le mystère reste total : à cette profondeur, aucune civilisation connue n’aurait pu construire ni même habiter un tel lieu.Les sceptiques avancent une explication plus rationnelle : il pourrait s’agir d’un phénomène géologique naturel, des formations rocheuses fracturées par les mouvements tectoniques. Pourtant, la régularité des motifs continue d’interpeller. Les images sonar montrent des structures de 400 mètres de large, formant des ensembles quadrillés trop ordonnés pour être purement aléatoires.Depuis deux décennies, les débats s’enchaînent sans qu’aucune expédition de grande ampleur n’ait été menée pour trancher. Les fonds cubains, encore peu explorés, gardent leurs secrets. Paulina Zelitsky elle-même affirmait en 2002 : « Ce que nous avons vu ne ressemble à rien de connu. »Aujourd’hui, ces vestiges muets dorment toujours sous les eaux turquoise des Caraïbes. Ville antique, illusion géologique ou trace d’un monde oublié, personne ne le sait. Mais une chose est sûre : le fond des mers n’a pas encore livré tous ses secrets. Et peut-être, un jour, ces mystérieuses ruines de Cuba réécriront une page entière de l’histoire humaine.
Pourquoi parle-t-on d'une éruption volcanique “plinienne” ?
02:42|Une éruption plinienne, c’est l’une des formes les plus violentes et spectaculaires qu’un volcan puisse produire. Son nom évoque à lui seul la catastrophe : il vient de Pline le Jeune, un écrivain et sénateur romain du Ier siècle, témoin direct de la destruction de Pompéi lors de l’éruption du Vésuve en 79 après J.-C.. C’est de son récit que les volcanologues ont tiré ce terme, en hommage à la précision et à la force de sa description.Tout commence au petit matin du 24 août 79. Le Vésuve, jusque-là endormi depuis des siècles, explose soudainement. Pline le Jeune, alors âgé de 17 ans, observe la scène depuis la baie de Naples, à plusieurs kilomètres du volcan. Dans une lettre qu’il écrira des années plus tard à l’historien Tacite, il raconte avoir vu s’élever dans le ciel une immense colonne de cendres « comme un pin parasol » : une tige verticale qui monte droit, puis s’élargit en une nuée sombre. Ce détail deviendra le symbole même du phénomène : la colonne plinienne.Ce type d’éruption se caractérise par une explosion extrêmement puissante, provoquée par la pression des gaz emprisonnés dans le magma. Quand cette pression devient insupportable, elle libère d’un coup une énergie colossale : les gaz s’échappent, entraînant cendres, roches et fragments de lave pulvérisée jusqu’à plusieurs dizaines de kilomètres d’altitude — parfois jusqu’à la stratosphère. La colonne de matériaux peut atteindre 30 à 40 km de haut, avant de s’effondrer partiellement, formant des nuées ardentes qui dévalent les pentes à plus de 300 km/h, brûlant tout sur leur passage.Lors du drame du Vésuve, ces nuées ont enseveli Pompéi, Herculanum et Stabies sous plusieurs mètres de cendres. Les habitants, surpris par la rapidité de l’éruption, ont été piégés par la chaleur et les gaz. Pline l’Ancien, oncle de Pline le Jeune et célèbre naturaliste, tenta de secourir les victimes par bateau — il mourut asphyxié sur la plage de Stabies.Depuis, les volcanologues parlent d’éruption plinienne pour désigner les explosions les plus intenses, comparables à celle du Vésuve. D’autres volcans ont connu le même sort : le Krakatoa en 1883, le Mont Saint Helens en 1980 ou le Pinatubo en 1991, dont l’éruption a projeté plus de 10 milliards de tonnes de cendres dans l’atmosphère.En somme, une éruption plinienne, c’est le volcan porté à son paroxysme : une force brute de la nature, capable d’effacer des villes entières — et dont le nom, depuis deux millénaires, porte la mémoire d’un témoin romain fasciné par la fin d’un monde.