Partager

cover art for Saviez-vous qu'un arbre peut marcher ?

Choses à Savoir PLANETE

Saviez-vous qu'un arbre peut marcher ?

Rediffusion


Connaissez-vous le paradoxe du palmier marcheur, également connu sous le nom scientifique de Socratea exorrhiza ? Imaginez un arbre qui peut se déplacer de plus d'un mètre par an. Oui, vous avez bien entendu, un arbre qui marche !

More episodes

View all episodes

  • Qu'est-ce que l’expérience du « jus invisible » ?

    02:52|
    Vers l’âge de deux ans, les enfants commencent à faire quelque chose d’extraordinaire : ils interagissent avec des objets qui n’existent pas. Une tasse vide devient brûlante, un repas imaginaire est servi avec sérieux. Ce comportement n’est pas anecdotique : il révèle l’apparition du jeu symbolique, la capacité à suspendre la réalité pour en créer une autre. Longtemps, les scientifiques ont vu dans cette aptitude une signature exclusive de l’esprit humain, à l’origine de notre créativité, de nos récits et de notre culture. Mais une expérience récente invite à reconsidérer cette certitude. Cette étude, publiée dans la revue Science, met en scène un bonobo exceptionnel : Kanzi. Kanzi n’est pas un primate ordinaire. Depuis les années 1980, il est connu pour sa capacité à comprendre des centaines de symboles lexigrammes et des phrases complexes en anglais. Mais l’expérience du jus invisible va encore plus loin.Le protocole est volontairement simple. Un expérimentateur fait mine de verser du jus dans des récipients… totalement vides. Aucun liquide réel n’est présent. Il boit ensuite ce « jus invisible », puis propose à Kanzi d’en faire autant, ou de servir à son tour. La question est cruciale : Kanzi va-t-il simplement imiter des gestes mécaniques, ou va-t-il entrer dans la fiction, comme le ferait un enfant humain ?Le résultat est troublant. Kanzi ne se contente pas de porter la tasse à sa bouche. Il adapte ses gestes : il incline le récipient, attend, boit, parfois essuie sa bouche. Mieux encore, lorsqu’il « sert » quelqu’un d’autre, il respecte la logique de la scène imaginaire. Autrement dit, il agit comme si le jus existait, tout en sachant qu’il n’existe pas réellement.C’est précisément ce « comme si » qui fascine les chercheurs. Le jeu symbolique suppose une double représentation mentale : savoir ce qui est réel, tout en acceptant temporairement une réalité fictive. Jusqu’ici, cette capacité était considérée comme un marqueur clé de l’esprit humain, observable très tôt chez l’enfant, mais absente chez les autres espèces.L’expérience du jus invisible suggère donc que la frontière cognitive entre l’humain et les grands singes est plus poreuse qu’on ne le pensait. Elle ne prouve pas que les bonobos imaginent des mondes complexes ou racontent des histoires, mais qu’ils peuvent, dans certaines conditions, partager une fiction intentionnelle.Les implications sont profondes. Si l’imagination n’est pas exclusivement humaine, alors ses racines évolutives sont bien plus anciennes. L’art, le langage symbolique et la culture pourraient reposer sur des capacités déjà présentes chez nos cousins primates.En somme, quand Kanzi boit un jus qui n’existe pas, ce n’est pas un simple jeu. C’est peut-être une fenêtre ouverte sur l’origine biologique de notre pouvoir le plus singulier : imaginer ce qui n’est pas encore réel.
  • Pourquoi la concentration de méthane augmente alors que la pollution diminue ?

    02:06|
    À première vue, le phénomène semble paradoxal. Depuis quelques années, certaines formes de pollution atmosphérique diminuent : moins d’oxydes d’azote, moins de particules fines, parfois moins d’émissions industrielles visibles. Et pourtant, dans le même temps, la concentration de méthane, un puissant gaz à effet de serre, augmente brutalement dans l’atmosphère. Comment expliquer cette contradiction ?Pour comprendre, il faut d’abord rappeler ce qu’est le méthane. Le méthane est un gaz à effet de serre environ 80 fois plus puissant que le CO₂ sur une période de 20 ans, même s’il reste moins longtemps dans l’atmosphère. Il provient principalement de l’agriculture, en particulier de l’élevage de ruminants, des zones humides naturelles, de l’exploitation des énergies fossiles et de la décomposition des déchets.Mais l’évolution de sa concentration ne dépend pas seulement de ce que nous émettons. Elle dépend aussi de la capacité de l’atmosphère à détruire ce gaz.Et c’est là que se situe le cœur du problème.Dans l’atmosphère, le méthane est principalement éliminé par une molécule très réactive : le radical hydroxyle, souvent surnommé le « détergent de l’atmosphère ». Ce radical attaque le méthane et le transforme progressivement en CO₂ et en vapeur d’eau. Tant que cette réaction fonctionne efficacement, la concentration de méthane reste relativement stable.Or, certaines études récentes montrent que la capacité de l’atmosphère à produire ces radicaux hydroxyles a temporairement diminué. Pourquoi ? Parce que les radicaux hydroxyles se forment à partir de réactions complexes impliquant la lumière solaire, l’ozone et des polluants comme les oxydes d’azote.Lorsque certaines pollutions baissent fortement — notamment les oxydes d’azote liés au trafic et à l’industrie — cela peut perturber cet équilibre chimique. Résultat : moins de radicaux hydroxyles disponibles, et donc une atmosphère moins efficace pour éliminer le méthane déjà présent.Autrement dit, même si les émissions de méthane n’augmentent pas brutalement, sa durée de vie dans l’air s’allonge. Il s’accumule plus vite qu’il ne disparaît, ce qui provoque une hausse rapide de sa concentration globale.Ce mécanisme montre une chose essentielle : la pollution atmosphérique ne fonctionne pas comme un simple robinet que l’on ouvre ou ferme. L’atmosphère est un système chimique complexe, où réduire un polluant peut parfois avoir des effets indirects inattendus sur d’autres gaz.En résumé, si le méthane augmente malgré une baisse apparente de la pollution, ce n’est pas parce que la planète émet soudainement beaucoup plus, mais parce que l’atmosphère, temporairement, nettoie moins bien. Une leçon de chimie atmosphérique qui rappelle que lutter contre le réchauffement climatique exige une vision globale, fine… et patiente.
  • Comment fabrique-t-on de la neige artificielle ?

    02:14|
    Quand la neige naturelle se fait rare, les stations de ski ont recours à la neige artificielle, aussi appelée neige de culture. Contrairement à une idée répandue, il ne s’agit pas de glace broyée ou de neige « chimique », mais simplement… d’eau et d’air, transformés selon des lois physiques très précises.Tout commence par un élément clé : la température.Pour produire de la neige artificielle, il faut une température humide — c’est-à-dire tenant compte de l’humidité de l’air — inférieure à environ –2 °C. Plus l’air est sec, plus la fabrication est possible à des températures proches de zéro. En dessous de –5 °C, le rendement devient optimal.L’eau utilisée est généralement pompée dans des retenues collinaires, des lacs ou des rivières, puis filtrée pour éliminer les impuretés. Elle est ensuite envoyée sous pression vers des canons à neige. Ces canons existent sous deux formes principales : les modèles à ventilateur et les modèles à perche.Le principe est toujours le même. L’eau est pulvérisée en microgouttelettes extrêmement fines, projetées dans l’air froid. Plus les gouttes sont petites, plus elles gèlent rapidement avant de toucher le sol. Pour y parvenir, on mélange l’eau avec de l’air comprimé à haute pression.Mais il y a une étape cruciale : l’ensemencement.Au cœur du canon, une petite partie de l’eau est transformée en noyaux de glace, parfois appelés germes de cristallisation. Ces minuscules particules servent de point de départ à la formation des flocons. Sans ces noyaux, l’eau pourrait retomber sous forme liquide.Une fois éjectées, les gouttelettes s’agglomèrent autour de ces noyaux et cristallisent en plein vol. En quelques secondes, elles se solidifient et tombent au sol sous forme de grains de neige, plus denses et plus ronds que les flocons naturels.Cette neige artificielle contient en moyenne 20 à 30 % d’eau, contre environ 10 % pour la neige naturelle. Résultat : elle est plus lourde, plus compacte et plus résistante au redoux, ce qui en fait un support idéal pour les pistes de ski.La production est cependant énergivore. Fabriquer un mètre cube de neige artificielle nécessite environ 400 litres d’eau et une quantité importante d’électricité pour la compression de l’air et le pompage. C’est pourquoi les stations produisent la neige principalement la nuit, lorsque les conditions sont plus froides et la demande énergétique plus faible.En résumé, la neige artificielle n’est pas une imitation grossière de la nature, mais une application rigoureuse de la physique, exploitant le froid, la pression et la cristallisation. Une prouesse technique… qui pose aussi des questions environnementales majeures sur l’eau, l’énergie et l’avenir des stations face au changement climatique.
  • Qu'est-ce que le rift du Midcontinent ?

    02:30|
    Il y a environ 1,1 milliard d’années, la Terre ne ressemblait en rien à la planète que nous connaissons aujourd’hui. Les continents étaient en mouvement permanent, s’assemblant et se disloquant lentement sous l’effet de la tectonique des plaques. C’est dans ce contexte qu’est né le rift du Mid-Continent, l’un des épisodes géologiques les plus spectaculaires – et les plus mystérieux – de l’histoire de l’Amérique du Nord.Un rift est une zone où la croûte terrestre s’étire, s’amincit et se fracture sous l’effet de forces internes. Lorsque ce processus va jusqu’au bout, il peut conduire à la séparation d’un continent et à la naissance d’un nouvel océan, comme ce fut le cas pour l’Atlantique. Le rift du Mid-Continent, lui, a suivi ce chemin… sans jamais l’achever.À l’époque, une immense fissure s’ouvre au cœur du continent nord-américain, décrivant un arc de plusieurs milliers de kilomètres, depuis l’actuel Kansas jusqu’à la région des Grands Lacs, en passant sous le lac Supérieur. D’énormes volumes de magma remontent depuis le manteau terrestre, donnant lieu à des épanchements de lave parmi les plus importants jamais observés sur Terre. En quelques millions d’années, des couches de roches volcaniques épaisses de plusieurs kilomètres se mettent en place.Tout indique alors qu’un continent est en train de se déchirer.Mais contre toute attente, le processus s’arrête.La croûte cesse de s’amincir, les fractures se figent, et l’activité volcanique s’éteint progressivement. Le rift devient ce que les géologues appellent un « rift avorté » ou « rift manqué » : une tentative de séparation continentale qui n’a jamais abouti.Pourquoi cet échec ?Les recherches récentes suggèrent que les forces tectoniques globales ont changé. À mesure que d’autres masses continentales entraient en collision ailleurs sur la planète, les contraintes se sont redistribuées. La croûte nord-américaine, au lieu de continuer à s’ouvrir, a été compressée et stabilisée, scellant définitivement la fracture naissante.Les traces de cet événement sont pourtant toujours bien visibles. Le lac Supérieur occupe aujourd’hui une partie de cette ancienne cicatrice, creusée dans des roches volcaniques particulièrement denses. Les anomalies magnétiques et gravitationnelles liées au rift sont encore détectables, témoignant de l’ampleur colossale de ce phénomène ancien.Le rift du Mid-Continent nous rappelle une chose essentielle : la surface de la Terre est le résultat de tentatives, d’échecs et de bifurcations géologiques. Même lorsqu’un continent ne se brise pas, les forces à l’œuvre laissent des marques durables, capables d’influencer paysages, ressources naturelles et écosystèmes… pendant plus d’un milliard d’années.
  • Pourquoi des fossiles vieux de 512 millions d’années bouleversent-ils notre vision de l’évolution ?

    01:49|
    Dans la province du Hunan, en Chine, une équipe internationale de chercheurs vient de mettre au jour un site fossilifère absolument unique : le « biote de Huayuan »...
  • Pourquoi les tourbières arctiques sont-elles nos meilleures alliées climatiques ?

    01:43|
     Ces zones humides, saturées d’eau et couvertes de mousses, cachent en réalité un super-pouvoir...
  • Pourquoi le Japon creuse-t-il à 6 000 mètres sous les mers ?

    01:49|
    A 6 000 mètres de profondeur. C’est là, au large de l’île de Minami Torishima, que le Japon vient de réaliser une prouesse qui pourrait bouleverser l’économie mondiale...
  • Pourquoi la monoculture menace-t-elle l'environnement ?

    02:42|
    La monoculture désigne le fait de cultiver une seule espèce végétale sur une même parcelle, souvent sur de grandes surfaces, et fréquemment année après année, au lieu d’alterner les cultures (rotation) ou de les associer. Sur le papier, c’est simple : mécanisation plus facile, rendements plus prévisibles, coûts unitaires plus bas. Mais écologiquement, c’est une stratégie risquée.1) Elle appauvrit la biodiversité.Quand un territoire devient un “océan” de maïs, de soja ou de palmiers, on remplace une mosaïque d’habitats par un milieu uniforme. Résultat : moins de plantes sauvages, moins d’insectes, moins d’oiseaux, et un écosystème plus fragile. À l’échelle mondiale, l’érosion de la biodiversité est déjà massive : l’évaluation de l’IPBES estime qu’environ 1 million d’espèces sont menacées d’extinction, et que 75 % des surfaces terrestres ont été significativement altérées par les activités humaines, notamment l’usage des terres. 2) Elle favorise les ravageurs… donc les pesticides.Une monoculture offre aux parasites une ressource continue et homogène. Quand un champ entier est la “même cantine”, une maladie ou un insecte peut se propager beaucoup plus vite. La réponse habituelle est l’augmentation des intrants : herbicides, fongicides, insecticides. Cela peut contaminer sols et cours d’eau, et accentuer la pression sur les pollinisateurs et la faune aquatique.3) Elle dégrade les sols.La répétition d’une même culture extrait souvent les mêmes nutriments, ce qui accentue l’usage d’engrais. Surtout, l’uniformité réduit la diversité des racines et de la microfaune du sol : moins de vers, moins de champignons utiles, moins de matière organique. À l’échelle globale, la FAO estime qu’environ 1,66 milliard d’hectares de terres sont dégradées par les activités humaines, et que plus de 60 % de cette dégradation touche des terres agricoles (cultures et pâturages). 4) Elle pèse sur l’eau et le climat.L’agriculture occupe environ 44 % des terres habitables de la planète. Et elle représente, globalement, autour de 70 % des prélèvements d’eau douce. Des systèmes de monoculture intensifs peuvent accentuer l’irrigation, le ruissellement d’azote et de phosphore (eutrophisation), et la dépendance aux engrais azotés, dont la fabrication et l’usage émettent des gaz à effet de serre.En bref : la monoculture est efficace à court terme, mais elle réduit la résilience des écosystèmes, abîme sols et eau, et fragilise la biodiversité—ce qui finit par menacer… l’agriculture elle-même.
  • Pourquoi la foudre est-elle attirée par le métal ?

    02:02|
    La foudre n’est pas réellement « attirée » par le métal au sens où un aimant attire le fer. Ce qui attire la foudre, ce n’est pas la matière elle-même, mais surtout la capacité d’un objet à conduire l’électricité et à offrir un chemin facile vers le sol.D’abord, rappelons ce qu’est la foudre. Dans un nuage d’orage, des charges électriques positives et négatives se séparent. Lorsque la différence de charge devient trop grande, l’électricité cherche brusquement à s’équilibrer : un éclair se forme entre le nuage et le sol, ou entre deux nuages. L’électricité va toujours emprunter le chemin qui oppose le moins de résistance.Le métal est un excellent conducteur. Ses électrons se déplacent facilement, ce qui permet au courant électrique de circuler rapidement. Ainsi, lorsqu’un objet métallique est présent, il peut offrir un chemin privilégié pour que la décharge atteigne le sol. Mais ce n’est pas la seule raison.La forme et la position de l’objet comptent beaucoup. Les objets hauts, pointus ou isolés, comme une antenne, un mât, un paratonnerre ou un arbre, favorisent l’intensification du champ électrique autour d’eux. Cette concentration du champ facilite le déclenchement de l’éclair. Si cet objet est en plus métallique, il devient un conducteur idéal une fois que la foudre frappe.Autrement dit, un poteau en bois très haut peut aussi être frappé par la foudre, même s’il n’est pas métallique. Mais s’il contient des éléments conducteurs (humidité, sève, clous, câbles), le courant y circulera tout de même.Le métal joue donc surtout un rôle après le déclenchement de l’éclair : il canalise l’électricité. C’est précisément ce principe qui est utilisé dans les paratonnerres. Un paratonnerre ne « capte » pas la foudre pour l’attirer volontairement, mais il fournit un chemin sûr pour guider le courant vers la terre, évitant ainsi que l’électricité ne traverse des matériaux inflammables ou des structures fragiles.Un point important à retenir : de petits objets métalliques, comme des bijoux, des clés ou une montre, n’augmentent pas significativement le risque d’être frappé par la foudre. Ce qui augmente le danger, c’est d’être la structure la plus haute ou la plus exposée dans un environnement donné.En résumé, la foudre ne cherche pas le métal. Elle cherche un chemin facile vers le sol. Le métal, parce qu’il conduit très bien l’électricité, devient simplement un excellent “tunnel” pour cette énergie gigantesque.