Partager

cover art for La musique et le langage sont-ils traités de la même façon par le cerveau ?

Choses à Savoir CERVEAU

La musique et le langage sont-ils traités de la même façon par le cerveau ?

La musique est plus que du bruit, mais même si elle repose sur une certaine organisation logique, la musique n’est pas non plus tout à fait du langage, alors que se passe-t-il dans le cerveau, lorsque nous écoutons de la musique ?


More episodes

View all episodes

  • Se faire masser le visage est-il efficace contre la maladie d'Alzheimer ?

    02:30|
    Des chercheurs sud-coréens ont récemment mené une étude fascinante sur des souris pour explorer les effets potentiels de massages du visage et du cou dans le cadre de la maladie d’Alzheimer. Leurs résultats, bien que préliminaires, ouvrent une piste thérapeutique surprenante : ces gestes simples pourraient favoriser l’élimination de substances toxiques du cerveau, notamment les protéines bêta-amyloïdes, connues pour leur rôle central dans le développement de la maladie.
  • Quelle est la meilleure méthode pour mémoriser à long terme ?

    01:47|
    Selon de nombreuses recherches en neurosciences cognitives, la meilleure méthode pour mémoriser durablement est la "récupération active" associée à la "répétition espacée".Plutôt que de relire passivement ses notes ou un texte plusieurs fois (ce que beaucoup de gens font), il est bien plus efficace de se forcer à se souvenir activement de l’information après des intervalles croissants. Par exemple, en se posant des questions sur ce qu’on a appris, ou en tentant de reformuler de mémoire le contenu.Une étude de référence sur ce sujet est celle de Karpicke et Roediger, publiée en 2008 dans *Science*. Les chercheurs ont comparé plusieurs méthodes d’apprentissage :– relire plusieurs fois un texte,– relire une fois puis s’auto-tester,– ou bien s’auto-tester plusieurs fois sans relecture.Résultat : les étudiants qui pratiquaient la récupération active (test répété sans relecture) avaient des taux de rétention 50 % plus élevés une semaine plus tard que ceux qui relisaient simplement le texte.Pourquoi cela fonctionne ? Lorsqu’on tente activement de récupérer une information en mémoire, on renforce les connexions neuronales associées à ce souvenir, notamment dans l’hippocampe et le cortex préfrontal. C’est comme "consolider un chemin" dans le cerveau. En revanche, la simple relecture donne une illusion de maîtrise (on reconnaît les informations), mais ne crée pas de trace mnésique solide.De plus, espacer les sessions de récupération (par exemple après 1 jour, 3 jours, 1 semaine) évite l’oubli rapide et favorise ce qu’on appelle l’effet de distribution, bien documenté depuis les travaux de Cepeda et al. (2006), qui ont mené une méta-analyse sur plus de 254 études. Leur conclusion : la répétition espacée multiplie par 2 à 3 l’efficacité de l’apprentissage à long terme.En résumé :– Testez-vous activement (questions, flashcards, reformulations),– Espacez les révisions pour consolider durablement.C’est la stratégie la plus validée par les neurosciences pour graver l’information dans la mémoire à long terme.
  • Pourquoi avons-nous des trous de mémoire ?

    02:00|
    Qui n’a jamais vécu ce moment frustrant : impossible de retrouver le nom d’une personne, un mot, un souvenir pourtant bien connu. Ces fameux « trous de mémoire » sont en réalité un phénomène naturel et même nécessaire pour notre cerveau.Une analyse approfondie publiée en 2023 dans la revue Trends in Cognitive Sciences, qui a passé en revue plus de 80 études sur le sujet, apporte un éclairage fascinant. Contrairement à l’idée reçue, les trous de mémoire ne signalent pas forcément un dysfonctionnement cérébral. Ils seraient au contraire le reflet d’un processus actif d’optimisation de la mémoire.Notre cerveau stocke en permanence une quantité gigantesque d’informations. Mais tout retenir serait inefficace, voire contre-productif. Comme l’explique Blake Richards, coauteur de l’analyse, « l’oubli permet de se débarrasser des informations obsolètes pour favoriser une mémoire plus flexible et plus adaptée à un environnement en perpétuel changement ».Sur le plan neurologique, plusieurs mécanismes entrent en jeu. D’abord, l’affaiblissement des connexions synaptiques : avec le temps, les liaisons entre certains neurones s’atténuent si l’information n’est pas régulièrement réactivée. C’est un processus appelé dépôt synaptique.Ensuite, le phénomène d’interférence : de nouveaux apprentissages peuvent entrer en compétition avec les anciens souvenirs. Par exemple, apprendre un nouveau mot de passe peut temporairement effacer le souvenir de l’ancien.L’analyse publiée dans Trends in Cognitive Sciences souligne aussi le rôle clé de l’hippocampe, la région du cerveau impliquée dans la consolidation des souvenirs. Lors de périodes de stress ou de fatigue, le fonctionnement de l’hippocampe est perturbé, ce qui augmente la probabilité d’un trou de mémoire.Les chiffres sont parlants : selon une étude citée dans l’analyse, environ 70 % des adultes rapportent des épisodes fréquents de mémoire défaillante, en particulier pour des détails récents. De plus, avec l’âge, la vitesse de récupération de l’information diminue : après 60 ans, le temps moyen pour retrouver un mot oublié peut doubler.Mais rassurez-vous : dans la majorité des cas, ces trous de mémoire sont transitoires. Des stratégies simples comme le sommeil de qualité, l’exercice physique ou la répétition espacée permettent de renforcer les connexions neuronales et de limiter ce phénomène.En somme, nos trous de mémoire ne sont pas un bug du cerveau, mais plutôt une fonction d’adaptation. Un cerveau qui oublie… pour mieux se souvenir de l’essentiel.
  • Pourquoi l’écriture manuscrite stimule-t-elle autant notre cerveau ?

    01:45|
    Prenez un stylo, une feuille… et écrivez à la main. Ce geste simple active en réalité des circuits cérébraux complexes. Contrairement à la frappe sur un clavier, qui mobilise surtout les zones motrices des doigts, l’écriture manuscrite engage une véritable chorégraphie neuronale.Dès 2012, une étude de l’Université d’Indiana menée par Karin James, publiée dans Trends in Neuroscience and Education, a montré que chez des enfants de 5 ans, le simple fait d’écrire les lettres à la main activait des zones du cerveau liées à la lecture, comme le gyrus fusiforme gauche. En revanche, taper ces mêmes lettres sur un clavier ne produisait pas cet effet.Pourquoi ? Parce qu’écrire à la main implique de planifier chaque geste, de contrôler la pression, l’orientation et la vitesse. C’est un processus sensorimoteur riche qui sollicite à la fois le cortex moteur, le cortex pariétal, le cervelet et les aires du langage.En 2020, une recherche norvégienne de Van der Meer et Van der Weel, parue dans Frontiers in Psychology, a confirmé que l’écriture manuscrite activait davantage de régions cérébrales que la dactylographie, chez des adultes comme chez des enfants. Les chercheurs ont mesuré l’activité cérébrale par EEG et ont constaté une synchronisation accrue des ondes cérébrales dans les bandes thêta et alpha, associées à l’apprentissage et à la mémoire.Les chiffres sont parlants : cette activation cérébrale est en moyenne 2 à 3 fois plus élevée durant l’écriture manuscrite que lors de la saisie au clavier. Ce n’est pas anodin : selon une méta-analyse de Mueller et Oppenheimer en 2014 (Psychological Science), les étudiants qui prennent des notes à la main mémorisent en moyenne 20 % de contenu en plus que ceux qui utilisent un ordinateur.Pourquoi ? Parce que l’écriture manuscrite oblige à reformuler, à synthétiser l’information. Elle favorise l’encodage en mémoire à long terme, là où la prise de notes sur clavier conduit plus souvent à une simple transcription passive.En somme, l’écriture manuscrite n’est pas un geste dépassé. Elle reste un outil puissant pour apprendre, comprendre, mémoriser. Dans un monde de plus en plus numérique, reprendre un stylo pourrait bien être un des meilleurs moyens de faire travailler son cerveau.
  • Quel est l'effet du sel sur le cerveau ?

    02:01|
    On sait depuis longtemps que consommer trop de sel augmente le risque d’hypertension et de maladies cardiovasculaires. Mais une étude récente, publiée en 2024 par une équipe de l’Université de Géorgie, vient bouleverser notre compréhension de ses effets : l’excès de sel agirait directement sur le cerveau, et plus précisément sur l’hypothalamus, une zone-clé impliquée dans la régulation de la soif, de l’appétit, de la température corporelle et… de la pression sanguine...
  • Comment une intervention chirurgicale peut-elle faire parler une langue étrangère ?

    02:18|
    L’histoire de cet adolescent néerlandais de 17 ans qui s’est réveillé d’une anesthésie en parlant uniquement anglais — incapable de comprendre sa langue maternelle — relève d’un phénomène neurologique rare, souvent appelé syndrome de la langue étrangère (Foreign Language Syndrome), à ne pas confondre avec le syndrome de l'accent étranger...
  • Je lance ma chaine Youtube

    01:24|
    Pour découvrir mes vidéos:Youtube:https://www.youtube.com/@SapristiFRTikTok:https://www.tiktok.com/@sapristifr
  • Peut-on communiquer pendant son sommeil ?

    02:03|
    En septembre 2024, une avancée inédite a été annoncée : deux personnes ont réussi à échanger de l'information pendant leurs rêves, grâce à une technologie mise au point par Michael Raduga et son entreprise REMspace. Ce progrès s’appuie sur les états de rêve lucide, dans lesquels une personne est consciente de rêver et peut y exercer une forme de contrôle volontaire.
  • Quelles traces laissent les intoxications alimentaires sur le cerveau ?

    02:06|
    Imaginez. Un soir, vous goûtez un plat nouveau. Sur le moment, tout va bien. Puis, quelques heures plus tard, les premiers symptômes apparaissent : nausées, crampes, vomissements. Vous comprenez rapidement : intoxication alimentaire. Vous vous en souvenez longtemps, et surtout, vous ne touchez plus jamais à cet aliment. Ce réflexe de rejet, presque viscéral, n’a rien d’anodin. Il est désormais prouvé qu’il trouve sa source dans le cerveau.Le 2 avril 2025, une équipe de chercheurs de l’Institut des neurosciences de l’université de Princeton a publié une étude marquante dans la revue Nature. Leurs travaux montrent que les intoxications alimentaires peuvent laisser une empreinte durable dans le cerveau. Autrement dit, l’aversion que l’on développe après un épisode de ce type n’est pas seulement psychologique ou culturelle : elle repose sur des modifications neurobiologiques réelles.Pour le démontrer, les scientifiques ont mené une expérience sur des souris. Ils leur ont d’abord fait goûter une saveur sucrée inédite. Puis, une trentaine de minutes plus tard, les rongeurs recevaient une substance leur provoquant un malaise digestif. Résultat : les souris évitaient ensuite cette saveur avec constance, parfois pendant plusieurs semaines. Et ce, alors même que le cerveau est censé avoir du mal à relier deux événements séparés dans le temps.Ce qui a particulièrement frappé les chercheurs, c’est la région du cerveau impliquée dans ce mécanisme : l’amygdale. Connue pour son rôle central dans la gestion des émotions et des souvenirs traumatiques, elle est ici activée à la fois lors de la dégustation initiale, lors du malaise, puis lors du rappel du goût. Ce triptyque d’activation montre que le cerveau encode profondément l’expérience, et associe la saveur au danger.Plus encore, les chercheurs ont identifié les neurones chargés de transmettre le signal de malaise : ceux du tronc cérébral qui produisent une molécule appelée CGRP. En stimulant artificiellement ces neurones, ils ont pu recréer l’aversion sans provoquer de véritable intoxication. Preuve que le signal sensoriel seul suffit à conditionner le cerveau.Ces résultats vont bien au-delà de la simple aversion alimentaire. Ils montrent que le cerveau est capable, en une seule expérience, de créer un lien de cause à effet entre un goût et une douleur, même différée. Un mécanisme qui pourrait aussi expliquer certaines phobies ou réactions disproportionnées à des stimuli mineurs.Ainsi, une simple intoxication alimentaire peut laisser une trace, une mémoire enfouie, mais bien réelle. Une mémoire gravée dans les circuits émotionnels du cerveau, et qui guide nos comportements bien après la guérison.