Partager

Choses à Savoir CERVEAU
La malbouffe est-elle un vrai danger pour la mémoire ?
La question « la malbouffe est-elle un danger pour la mémoire ? » a longtemps été posée, mais une étude récente apporte des preuves solides. Le 11 septembre 2025, des chercheurs de l’Université de Caroline du Nord à Chapel Hill ont publié dans la revue Neuron des résultats inquiétants : une alimentation riche en graisses saturées, typique de la « junk food », pourrait altérer la mémoire en quelques jours seulement.
L’équipe de Juan Song et Taylor Landry a travaillé sur des souris pour comprendre comment un tel régime influence le cerveau. Leur attention s’est portée sur l’hippocampe, une région clé pour la mémoire. Ils ont découvert qu’un type particulier de neurones, appelés interneurones CCK (pour cholecystokinine), devenait anormalement actif après une exposition à la malbouffe. Cette hyperactivité dérègle le circuit neuronal responsable de l’encodage et du rappel des souvenirs.
Le mécanisme en jeu est directement lié au métabolisme énergétique du cerveau. Normalement, les neurones utilisent le glucose comme carburant. Mais sous l’effet d’un régime trop gras, cette utilisation est perturbée. Les chercheurs ont identifié une protéine, la PKM2 (pyruvate kinase M2), comme pivot de cette altération. Quand la PKM2 ne fonctionne pas correctement, les interneurones CCK s’emballent, ce qui provoque un déclin de la mémoire.
Le plus frappant est la rapidité des effets : les souris montraient déjà des déficits cognitifs après seulement quatre jours de régime gras. Et cela avant même d’avoir pris du poids ou de développer des signes de diabète. Autrement dit, les conséquences sur le cerveau précèdent les effets métaboliques visibles.
Heureusement, l’étude montre aussi que ces dommages sont réversibles. En restaurant les niveaux de glucose cérébral, l’activité des interneurones redevient normale et la mémoire s’améliore. Les chercheurs ont même testé le jeûne intermittent : après une période de malbouffe, cette pratique suffisait à rétablir l’équilibre neuronal et les capacités mnésiques.
Ces résultats sont un avertissement fort. La malbouffe ne menace pas seulement notre silhouette ou notre santé cardiovasculaire, mais aussi notre mémoire, et cela très rapidement. Certes, l’expérience a été menée sur des souris, et il faudra des études complémentaires chez l’humain pour confirmer ces effets. Mais le signal est clair : notre cerveau est sensible à ce que nous mangeons, parfois plus vite qu’on ne l’imagine.
En conclusion, l’étude de l’Université de Caroline du Nord publiée dans Neuron démontre que la malbouffe est bel et bien un danger pour la mémoire. Et si la menace apparaît vite, la bonne nouvelle est que des changements alimentaires peuvent aussi rapidement inverser la tendance.
More episodes
View all episodes

Que subit votre cerveau quand vous mangez des aliments transformés ?
02:29|Dès la première bouchée d’un biscuit industriel ou d’un plat prêt-à-réchauffer, le cerveau entre en scène. Les aliments ultra-transformés (AUT) — riches en sucres rapides, graisses, sel et additifs — activent rapidement les circuits de la récompense, notamment au niveau du système mésolimbique. Selon une revue de l’Université du Michigan, ces aliments « frappent » le cerveau de manière rapide et intense, stimulant les zones impliquées dans le plaisir, la motivation et l’apprentissage. Résultat : une forte libération de dopamine, comparable à celle observée avec certaines substances addictives. On ressent du plaisir, ce qui incite à recommencer, jusqu’à ce que le cerveau en fasse une habitude automatique.Mais le plaisir n’est qu’une partie de l’histoire. Une étude publiée en 2025 dans Nature Mental Health a montré que les personnes consommant le plus d’aliments ultra-transformés présentaient des altérations des zones sous-corticales du cerveau, notamment le noyau accumbens et l’hypothalamus — deux régions essentielles au contrôle de la faim et de la satiété. Le cerveau perd alors une partie de sa capacité à réguler le comportement alimentaire : la partie rationnelle (celle qui dit “stop”) devient moins influente face à la récompense immédiate.D’autres recherches mettent en évidence des effets inflammatoires. Une revue parue en 2024 dans la revue Nutrients (MDPI) a montré que les AUT favorisent la neuroinflammation et le stress oxydatif. Ces processus entraînent une fragilisation des neurones et altèrent la communication entre différentes zones cérébrales. Autrement dit, les aliments ultra-transformés créent un environnement chimique hostile dans lequel le cerveau fonctionne en surrégime, mais avec moins d’efficacité.Sur le long terme, ces modifications ne sont pas anodines. Une étude publiée dans JAMA Neurology en 2022 a suivi plus de 10 000 adultes pendant dix ans. Résultat : les gros consommateurs d’aliments ultra-transformés présentaient un risque de démence supérieur de 25 % et un risque de déclin cognitif accéléré. La mémoire et les fonctions exécutives (concentration, planification, autocontrole) semblent particulièrement touchées.Bonne nouvelle, pourtant : le cerveau reste plastique. En réduisant la part d’aliments ultra-transformés et en réintroduisant des produits bruts — fruits, légumes, grains entiers, légumineuses —, on peut rééquilibrer les circuits de la récompense et diminuer l’inflammation cérébrale. Autrement dit, le cerveau peut se réparer. Mais il réclame qu’on le traite comme un chef-d’œuvre biologique, pas comme une poubelle à calories rapides.
Pourquoi rester assis trop longtremps est mauvais pour le cerveau ?
02:28|Rester assis trop longtemps ne nuit pas seulement à la santé physique : cela pourrait aussi abîmer le cerveau. C’est la conclusion d’une étude récente menée conjointement par des chercheurs des universités de Vanderbilt, Pittsburgh et Séoul, publiée en 2025. Ces scientifiques se sont intéressés aux effets du comportement sédentaire sur le cerveau de plusieurs centaines de personnes âgées, et les résultats sont préoccupants.Les participants, âgés de 60 à 80 ans, ont porté des capteurs pendant plusieurs semaines pour mesurer leur activité quotidienne. En parallèle, leur cerveau a été observé par imagerie IRM afin d’évaluer le volume des différentes régions cérébrales. Les chercheurs ont ensuite croisé ces données avec le temps passé assis chaque jour. Leur constat : plus les participants restaient immobiles longtemps, plus certaines zones clés du cerveau montraient une réduction de volume, notamment dans les régions impliquées dans la mémoire, l’attention et la régulation des émotions.Autrement dit, la sédentarité prolongée s’accompagne d’une atrophie cérébrale, un phénomène similaire à celui observé lors du vieillissement accéléré. Les scientifiques ont noté que même chez des personnes qui faisaient un peu d’exercice quotidien, rester assis plusieurs heures d’affilée annulait en partie les bénéfices de cette activité physique. Ce n’est donc pas seulement le manque d’exercice qui pose problème, mais bien la durée continue passée sans bouger.Pourquoi ce lien ? Le mécanisme exact n’est pas encore entièrement élucidé, mais plusieurs hypothèses existent. Le fait de rester assis longtemps réduirait la circulation sanguine vers le cerveau, limitant l’apport d’oxygène et de nutriments essentiels aux neurones. Cela pourrait également perturber l’activité du système glymphatique — le réseau de drainage du cerveau — et favoriser l’accumulation de protéines toxiques comme la bêta-amyloïde, impliquée dans la maladie d’Alzheimer. À plus long terme, cette sous-stimulation neuronale pourrait altérer la plasticité cérébrale, c’est-à-dire la capacité du cerveau à se renouveler et à créer de nouvelles connexions.Heureusement, les chercheurs rappellent qu’il n’est jamais trop tard pour agir. Il suffit de rompre la position assise toutes les 30 à 45 minutes : se lever, marcher quelques minutes, s’étirer ou monter des escaliers suffit déjà à relancer la circulation et l’activité cérébrale.En somme, le message est clair : le cerveau n’aime pas l’immobilité. Bouger régulièrement, même légèrement, est l’un des moyens les plus simples et les plus puissants pour préserver ses capacités cognitives avec l’âge.
Pourquoi le coté où démarre la maladie de Parkinson n'est pas anodin ?
01:54|La maladie de Parkinson débute rarement de manière symétrique. Chez la plupart des patients, les premiers tremblements, raideurs ou lenteurs de mouvement apparaissent d’un seul côté du corps. Et selon une étude menée par l’Université de Genève et les Hôpitaux universitaires genevois, publiée en 2025 dans Nature Parkinson’s Disease, ce détail n’en est pas un : le côté où la maladie démarre permettrait de prédire la nature des troubles « cachés » qui accompagneront son évolution.Les chercheurs ont passé en revue près de 80 études menées sur plusieurs décennies, portant sur des milliers de patients. Leur constat est clair : les symptômes moteurs d’un côté du corps correspondent à une atteinte initiale de l’hémisphère cérébral opposé, et ce choix du côté n’est pas neutre. Quand la maladie touche d’abord le côté droit du corps, c’est donc l’hémisphère gauche qui est le plus atteint. Ces patients présentent souvent davantage de troubles cognitifs : difficultés de concentration, altération de la mémoire, ralentissement intellectuel, voire un risque accru de démence à long terme.À l’inverse, lorsque les premiers signes apparaissent du côté gauche du corps, donc avec une atteinte dominante de l’hémisphère droit, le profil est différent. Ces patients ont tendance à développer plus de troubles émotionnels et psychiatriques : anxiété, dépression, perte de motivation, difficultés à reconnaître les émotions des autres ou à traiter les informations visuelles et spatiales. En d’autres termes, le cerveau ne se dégrade pas de la même manière selon le côté qu’il affecte en premier.Cette découverte pourrait changer la manière dont les médecins suivent la maladie de Parkinson. Dès l’apparition des premiers symptômes moteurs, le côté touché donnerait une indication précieuse sur les troubles non moteurs à surveiller. Cela permettrait d’adapter les traitements, la rééducation et l’accompagnement psychologique bien plus tôt dans la progression de la maladie.Sur le plan neuroscientifique, cela s’explique par la spécialisation des hémisphères cérébraux. Le gauche est impliqué dans le langage, la planification et la mémoire ; le droit dans les émotions, la perception spatiale et les interactions sociales. Ainsi, selon la zone du cerveau qui dégénère d’abord, la maladie suit une trajectoire différente.En conclusion, le côté où démarre la maladie de Parkinson n’est pas un simple hasard. Il agit comme un véritable indicateur pronostique, capable d’annoncer les troubles cognitifs ou émotionnels à venir, et donc d’orienter vers une prise en charge plus personnalisée.
Existe-t-il un lien entre acouchènes et sommeil profond ?
02:24|Les acouphènes — cette perception persistante d’un bruit sans source extérieure — sont souvent liés à des troubles du sommeil. Mais existe-t-il réellement un lien entre acouphènes et sommeil profond ? Une étude publiée en juin 2025 dans la revue scientifique Brain Communications apporte des éléments nouveaux.Les chercheurs ont étudié plusieurs dizaines de personnes souffrant d’acouphènes chroniques, en les divisant en deux groupes : ceux qui dormaient mal et ceux dont le sommeil restait de bonne qualité. Grâce à l’imagerie cérébrale (IRM), ils ont observé le fonctionnement du système glymphatique — un réseau de « nettoyage » du cerveau qui élimine les déchets métaboliques pendant le sommeil profond. Ce système joue un rôle essentiel : c’est durant le sommeil lent, la phase la plus réparatrice, que le liquide cérébrospinal circule activement pour débarrasser le cerveau des toxines.Les résultats montrent que les personnes souffrant à la fois d’acouphènes et de troubles du sommeil présentent un dysfonctionnement marqué de ce système glymphatique. Les chercheurs ont notamment observé des signes précis : des espaces périvasculaires élargis, un volume anormal du plexus choroïde et une baisse d’un indicateur appelé DTI-ALPS, qui reflète la circulation du liquide dans le cerveau. Ces anomalies étaient absentes ou beaucoup moins prononcées chez les sujets sans trouble du sommeil.Autrement dit, chez certains patients, le cerveau semble ne pas parvenir à « se nettoyer » correctement pendant la nuit. Or, ce processus de nettoyage dépend directement du sommeil profond. Si le cerveau reste en partie « en veille » dans les zones auditives — celles impliquées dans la perception du son —, il pourrait empêcher l’installation complète du sommeil lent. Cela expliquerait pourquoi de nombreux acouphéniques décrivent un sommeil fragmenté, non réparateur, ou une difficulté à atteindre un état de repos total.Les chercheurs restent prudents : l’étude ne permet pas encore d’affirmer si ce mauvais sommeil provoque les acouphènes ou si, à l’inverse, le bourdonnement permanent empêche le sommeil profond. La relation semble probablement bidirectionnelle. Mais une chose est claire : le lien entre les deux existe bel et bien, et il passe sans doute par la qualité du sommeil lent et le bon fonctionnement du système glymphatique.En somme, mieux dormir, et surtout retrouver un sommeil profond de qualité, pourrait être une piste thérapeutique sérieuse pour soulager certains acouphènes.
Comment expliquer le « syndrome du bébé oublié » dans une voiture ?
02:15|Imaginez un matin ordinaire. Vous partez au travail, votre enfant dort paisiblement à l’arrière. La route est la même, la radio aussi. Vous arrivez au bureau, garez la voiture… et soudain, l’horreur. Vous réalisez que vous avez oublié votre bébé dans le siège auto. Comment un tel drame peut-il arriver, même à des parents attentifs ? Les neurosciences apportent une réponse bouleversante : ce n’est pas un manque d’amour, mais un bug dans le fonctionnement normal du cerveau.Ce qu’on appelle le « syndrome du bébé oublié » — ou Forgotten Baby Syndrome — résulte d’un conflit entre deux systèmes de mémoire. Une étude publiée en 2020 dans Frontiers in Psychiatry (« Forgotten Baby Syndrome: dimensions of the phenomenon and new research perspectives ») a montré que ces situations se produisent alors que les fonctions cognitives des parents sont intactes. Le problème vient de l’interaction entre la mémoire de l’habitude et la mémoire prospective.La mémoire de l’habitude, gérée par les ganglions de la base, permet d’effectuer des actions automatiques : conduire, suivre le même trajet, fermer la porte à clé. La mémoire prospective, elle, dépend du cortex préfrontal et de l’hippocampe : elle nous rappelle ce que nous devons faire dans le futur — comme déposer le bébé à la crèche.Le drame survient quand la mémoire de l’habitude prend le dessus. Si le trajet est identique à celui des jours sans enfant, le cerveau bascule en mode “pilote automatique”. Les gestes se succèdent mécaniquement, sans contrôle conscient. La mémoire prospective, qui devait signaler « n’oublie pas la crèche », ne s’active pas. Aucun signal visuel ni sonore ne vient rappeler la présence de l’enfant — surtout s’il dort. Le cerveau agit alors comme si la tâche avait déjà été accomplie.Le stress, le manque de sommeil ou une rupture de routine amplifient ce risque : ils affaiblissent le cortex préfrontal et perturbent la capacité du cerveau à maintenir plusieurs intentions actives en même temps.Selon les auteurs de l’étude, « ces oublis tragiques résultent du fonctionnement normal de la mémoire humaine, dans des conditions où les systèmes automatiques prennent le dessus sur la pensée consciente ». En d’autres termes, le cerveau fait ce pour quoi il est conçu : économiser de l’énergie cognitive. Mais cette économie peut, dans de rares cas, être fatale.C’est pourquoi les experts recommandent des signaux physiques ou visuels — laisser un sac ou un objet personnel sur le siège arrière, par exemple — afin de créer un “rappel externe”. Un simple repère peut suffire à réveiller la mémoire consciente. Parce que, parfois, ce n’est pas le cœur qui oublie, mais le cerveau.
Pourquoi sommes-nous accros aux paris ?
02:35|Prenez un parieur face à une machine à sous. Il appuie sur les boutos, les rouleaux tournent, les sons se déclenchent, et pendant une fraction de seconde, tout est suspendu. Cette tension, ce frisson, c’est le cœur du mécanisme cérébral du pari. Ce n’est pas tant le gain qui nous attire, mais l’incertitude. Et la science le montre clairement.Une étude publiée dans Frontiers in Behavioral Neuroscience a révélé que le système dopaminergique du cerveau — celui qui gère la récompense et la motivation — réagit plus fortement à l’imprévisibilité qu’au gain lui-même. Autrement dit, notre cerveau sécrète davantage de dopamine, le neurotransmetteur du plaisir, quand le résultat est incertain que lorsqu’il est garanti. C’est cette attente, cette possibilité d’un gain, qui nous électrise.Les neuroscientifiques ont observé, grâce à l’imagerie cérébrale, que des zones comme le noyau accumbens et le cortex préfrontal s’activent pendant un pari. Le premier gère la récompense, le second la planification et le contrôle. Mais chez les parieurs compulsifs, le cortex préfrontal fonctionne moins bien : il freine moins les impulsions, et la logique perd face à l’émotion. Le cerveau se met alors à répéter le comportement, comme s’il s’agissait d’une substance addictive.C’est ce que montre une autre étude, publiée dans Nature Reviews Neuroscience, qui compare le jeu pathologique à une addiction sans drogue. Les mêmes circuits de la dépendance — ceux activés par la cocaïne ou l’alcool — s’allument lors d’un pari. Le cerveau apprend à associer le risque à une récompense potentielle, et chaque mise devient une promesse chimique de plaisir.Un autre phénomène accentue encore l’addiction : celui des quasi-victoires. Vous perdez, mais de peu ; deux symboles identiques s’alignent, le troisième manque d’un rien. Le cerveau, lui, interprète cela comme une réussite partielle, et libère de la dopamine. Résultat : vous rejouez, convaincu que la chance est proche.En somme, les paris exploitent une faille dans notre architecture mentale. L’incertitude déclenche la dopamine, la dopamine entretient le désir, et le contrôle rationnel s’affaiblit. Ce n’est pas une question de volonté, mais une réaction neurochimique profondément ancrée.Ce que la science nous apprend, c’est que parier revient à dialoguer avec nos instincts les plus primitifs. Et dans ce dialogue, le hasard a souvent le dernier mot.
A quoi servent les moments où vous ne pensez “à rien” ?
02:39|Vous connaissez ce moment. Vous êtes dans le bus, le regard perdu à travers la vitre, et soudain, vous réalisez que… vous ne pensez à rien. Pas de souvenir, pas de projet, pas même une chanson dans la tête. Juste… du vide. Ce phénomène, que nous avons tous expérimenté, a désormais un nom scientifique : le « mind blanking », littéralement « l’esprit en blanc ». Et loin d’être un simple trou noir de la pensée, il jouerait un rôle essentiel dans notre équilibre mental.Une étude publiée dans la prestigieuse revue Trends in Cognitive Sciences par Thomas Andrillon et ses collègues a exploré ce curieux état. Les chercheurs ont demandé à des volontaires de signaler régulièrement le contenu de leurs pensées. Parfois, ils répondaient : « rien ». Pas qu’ils n’aient pas voulu répondre : il n’y avait simplement rien à dire. Leur esprit semblait s’être mis sur pause, sans rêve éveillé ni réflexion consciente.Pour les neuroscientifiques, ce vide n’est pas un simple oubli, mais un état mental à part entière. Le cerveau reste éveillé, mais son activité change de rythme : les zones habituellement impliquées dans la réflexion et la perception se désynchronisent, un peu comme une machine qu’on met en veille. Andrillon parle d’un état de vigilance réduite, proche d’une micro-sieste cognitive.Mais à quoi sert ce moment suspendu ? L’étude avance plusieurs hypothèses. D’abord, il pourrait s’agir d’un mécanisme de récupération interne : en cessant momentanément de produire du contenu mental, le cerveau se reposerait, se « nettoierait » en quelque sorte. Ces pauses aideraient à préserver nos ressources attentionnelles, épuisées par le flux continu de pensées et de stimulations.Deuxième hypothèse : le mind blanking servirait de pont entre deux pensées, un instant de transition durant lequel notre cerveau efface la précédente avant d’en accueillir une nouvelle. Ce serait un espace neutre, un sas nécessaire entre deux trains d’idées.Enfin, ces moments de vide pourraient avoir une fonction de régulation : permettre au cerveau d’ajuster sa vigilance, de contrôler ses propres fluctuations internes, un peu comme un pilote automatique qui vérifie ses instruments avant de reprendre le contrôle manuel.En somme, ne rien penser n’est pas une défaillance : c’est une respiration de l’esprit. Une manière naturelle pour notre cerveau de se recentrer, de se régénérer. La prochaine fois que votre esprit se vide, ne cherchez pas à combler ce silence. Laissez-le faire. Ce n’est pas du vide… c’est un moment de pause, profondément humain, et peut-être vital.
Je vous présente mon nouveau label de podcasts
02:56|Voici les 3 premiers podcasts du label Audio Sapiens:1/ SurvivreApple Podcasts:https://podcasts.apple.com/us/podcast/survivre-histoires-vraies/id1849332822Spotify:https://open.spotify.com/show/6m4YqFSEFm6ZWSkqTiOWQR2/ A la lueur de l'HistoireApple Podcasts:https://podcasts.apple.com/us/podcast/a-la-lueur-de-lhistoire/id1849342597Spotify:https://open.spotify.com/show/7HtLCQUQ0EFFS7Hent5mWd3/ Entrez dans la légendeApple Podcasts:https://open.spotify.com/show/0NCBjxciPo4LCRiHipFpoqSpotify:https://open.spotify.com/show/0NCBjxciPo4LCRiHipFpoqEt enfin, le site web du label ;)https://www.audio-sapiens.com
Comment peut-on rajeunir le cerveau de dix ans ?
01:55|Et si un simple jeu vidéo pouvait rajeunir votre cerveau ? C’est la promesse inattendue d’une équipe de chercheurs de l’Université McGill et de l’Institut neurologique de Montréal, qui vient de franchir une étape décisive dans la compréhension du vieillissement cérébral.Depuis toujours, on pensait que le cerveau déclinait lentement avec l’âge, inexorablement. La mémoire se fragilise, l’attention se disperse, la vitesse de réflexion diminue. Et derrière ce lent effritement, une molécule joue un rôle crucial : l’acétylcholine. C’est elle qui permet aux neurones de communiquer, de se concentrer, d’apprendre. Or, sa production baisse naturellement à partir de 40 ans. Aucun médicament n’avait jamais réussi à la relancer. Jusqu’à aujourd’hui.Dans leur étude, les chercheurs ont recruté près d’une centaine de volontaires âgés de plus de 65 ans. Pendant dix semaines, certains ont suivi un programme d’entraînement cérébral intensif sous forme de jeu vidéo, conçu pour stimuler la rapidité, la mémoire de travail et la concentration. Les autres jouaient à des jeux classiques, sans visée thérapeutique. Avant et après l’expérience, tous ont passé des examens d’imagerie cérébrale permettant de mesurer l’activité du système cholinergique, celui qui produit justement l’acétylcholine.Les résultats ont surpris tout le monde. Chez les participants qui s’étaient réellement entraînés, la production naturelle d’acétylcholine a augmenté d’environ 2,3 %. C’est peu, mais c’est énorme : cela correspond à peu près à la perte naturelle observée au fil de dix années de vieillissement. Autrement dit, leur cerveau s’est comporté comme celui d’une personne dix ans plus jeune. Une première absolue dans l’histoire de la recherche sur le vieillissement cérébral.Ce qui fascine les scientifiques, c’est que cette amélioration n’est pas due à un médicament, mais à une stimulation cognitive ciblée. Le cerveau, même vieillissant, reste plastique : il est capable de se réorganiser, de relancer des circuits endormis, pour peu qu’on le pousse à sortir de sa routine.Bien sûr, l’étude doit encore être confirmée sur un plus grand nombre de personnes, et sur des durées plus longues. Mais elle ouvre une perspective vertigineuse : celle de pouvoir « réactiver » le cerveau par l’entraînement, comme on renforce un muscle. En d’autres termes, le vieillissement cérébral ne serait peut-être pas une fatalité — juste une question d’exercice.