Partager

cover art for Combien y a-t-il de neurones dans le cerveau humain ?

Choses à Savoir CERVEAU

Combien y a-t-il de neurones dans le cerveau humain ?

Pendant longtemps, les manuels de biologie affirmaient qu’un cerveau humain contenait environ 100 milliards de neurones. Ce chiffre est resté gravé dans les esprits comme une vérité incontestable. Pourtant, la science n’aime pas les approximations trop simples, et des chercheurs ont voulu recompter plus sérieusement. C’est ce qu’a fait en 2009 la neuroscientifique brésilienne Suzana Herculano-Houzel avec une méthode innovante appelée la “méthode du bouillon de cellules”.


Plutôt que de compter les neurones un par un au microscope – tâche évidemment impossible – son équipe a dissous des tissus cérébraux de cerveaux post-mortem dans une solution spéciale. Ce “bouillon” homogène permettait ensuite de mesurer la densité de noyaux cellulaires et, par extrapolation, d’estimer avec une précision bien meilleure le nombre total de neurones. Résultat : le cerveau humain contient en moyenne 86 milliards de neurones, et non 100 milliards comme on le croyait auparavant.

Mais ce chiffre cache une répartition inégale. Environ 69 milliards de ces neurones se trouvent dans le cervelet, la structure située à l’arrière du crâne, longtemps considérée comme surtout impliquée dans la coordination motrice. Le cortex cérébral, siège des fonctions cognitives les plus sophistiquées – langage, mémoire, raisonnement – en contient “seulement” 16 milliards. Cela signifie que la majorité des neurones humains n’est pas dans la zone associée à la pensée consciente, mais dans une région qui règle nos mouvements avec une précision extraordinaire.


Cette découverte a plusieurs implications fascinantes. D’abord, elle permet de comparer notre cerveau à celui des autres espèces. Par exemple, certains grands singes possèdent un nombre global de neurones inférieur, mais une densité neuronale similaire dans le cortex. Ce qui semble nous distinguer, ce n’est pas seulement le nombre total de neurones, mais le fait que nous avons réussi à concentrer beaucoup de neurones corticaux dans une taille de cerveau relativement contenue, optimisant ainsi l’efficacité énergétique.


Ensuite, ce chiffre relativise l’idée que “plus de neurones = plus d’intelligence”. Le rapport entre les neurones corticaux et la masse corporelle semble plus pertinent pour comprendre nos capacités cognitives uniques. Chez l’humain, ce rapport est exceptionnellement favorable : malgré un corps de taille moyenne, nous disposons d’un cortex riche en neurones spécialisés.


En conclusion, le cerveau humain compte environ 86 milliards de neurones, organisés en réseaux d’une complexité vertigineuse. Ce chiffre, corrigé par la science récente, montre que nous ne possédons pas forcément “le plus grand” cerveau du règne animal, mais sans doute l’un des plus ingénieusement câblés, capable de générer langage, culture et conscience. Une preuve supplémentaire que la qualité des connexions importe parfois plus que la quantité brute.

More episodes

View all episodes

  • Pourquoi le coté où démarre la maladie de Parkinson n'est pas anodin ?

    01:54|
    La maladie de Parkinson débute rarement de manière symétrique. Chez la plupart des patients, les premiers tremblements, raideurs ou lenteurs de mouvement apparaissent d’un seul côté du corps. Et selon une étude menée par l’Université de Genève et les Hôpitaux universitaires genevois, publiée en 2025 dans Nature Parkinson’s Disease, ce détail n’en est pas un : le côté où la maladie démarre permettrait de prédire la nature des troubles « cachés » qui accompagneront son évolution.Les chercheurs ont passé en revue près de 80 études menées sur plusieurs décennies, portant sur des milliers de patients. Leur constat est clair : les symptômes moteurs d’un côté du corps correspondent à une atteinte initiale de l’hémisphère cérébral opposé, et ce choix du côté n’est pas neutre. Quand la maladie touche d’abord le côté droit du corps, c’est donc l’hémisphère gauche qui est le plus atteint. Ces patients présentent souvent davantage de troubles cognitifs : difficultés de concentration, altération de la mémoire, ralentissement intellectuel, voire un risque accru de démence à long terme.À l’inverse, lorsque les premiers signes apparaissent du côté gauche du corps, donc avec une atteinte dominante de l’hémisphère droit, le profil est différent. Ces patients ont tendance à développer plus de troubles émotionnels et psychiatriques : anxiété, dépression, perte de motivation, difficultés à reconnaître les émotions des autres ou à traiter les informations visuelles et spatiales. En d’autres termes, le cerveau ne se dégrade pas de la même manière selon le côté qu’il affecte en premier.Cette découverte pourrait changer la manière dont les médecins suivent la maladie de Parkinson. Dès l’apparition des premiers symptômes moteurs, le côté touché donnerait une indication précieuse sur les troubles non moteurs à surveiller. Cela permettrait d’adapter les traitements, la rééducation et l’accompagnement psychologique bien plus tôt dans la progression de la maladie.Sur le plan neuroscientifique, cela s’explique par la spécialisation des hémisphères cérébraux. Le gauche est impliqué dans le langage, la planification et la mémoire ; le droit dans les émotions, la perception spatiale et les interactions sociales. Ainsi, selon la zone du cerveau qui dégénère d’abord, la maladie suit une trajectoire différente.En conclusion, le côté où démarre la maladie de Parkinson n’est pas un simple hasard. Il agit comme un véritable indicateur pronostique, capable d’annoncer les troubles cognitifs ou émotionnels à venir, et donc d’orienter vers une prise en charge plus personnalisée.
  • Existe-t-il un lien entre acouchènes et sommeil profond ?

    02:24|
    Les acouphènes — cette perception persistante d’un bruit sans source extérieure — sont souvent liés à des troubles du sommeil. Mais existe-t-il réellement un lien entre acouphènes et sommeil profond ? Une étude publiée en juin 2025 dans la revue scientifique Brain Communications apporte des éléments nouveaux.Les chercheurs ont étudié plusieurs dizaines de personnes souffrant d’acouphènes chroniques, en les divisant en deux groupes : ceux qui dormaient mal et ceux dont le sommeil restait de bonne qualité. Grâce à l’imagerie cérébrale (IRM), ils ont observé le fonctionnement du système glymphatique — un réseau de « nettoyage » du cerveau qui élimine les déchets métaboliques pendant le sommeil profond. Ce système joue un rôle essentiel : c’est durant le sommeil lent, la phase la plus réparatrice, que le liquide cérébrospinal circule activement pour débarrasser le cerveau des toxines.Les résultats montrent que les personnes souffrant à la fois d’acouphènes et de troubles du sommeil présentent un dysfonctionnement marqué de ce système glymphatique. Les chercheurs ont notamment observé des signes précis : des espaces périvasculaires élargis, un volume anormal du plexus choroïde et une baisse d’un indicateur appelé DTI-ALPS, qui reflète la circulation du liquide dans le cerveau. Ces anomalies étaient absentes ou beaucoup moins prononcées chez les sujets sans trouble du sommeil.Autrement dit, chez certains patients, le cerveau semble ne pas parvenir à « se nettoyer » correctement pendant la nuit. Or, ce processus de nettoyage dépend directement du sommeil profond. Si le cerveau reste en partie « en veille » dans les zones auditives — celles impliquées dans la perception du son —, il pourrait empêcher l’installation complète du sommeil lent. Cela expliquerait pourquoi de nombreux acouphéniques décrivent un sommeil fragmenté, non réparateur, ou une difficulté à atteindre un état de repos total.Les chercheurs restent prudents : l’étude ne permet pas encore d’affirmer si ce mauvais sommeil provoque les acouphènes ou si, à l’inverse, le bourdonnement permanent empêche le sommeil profond. La relation semble probablement bidirectionnelle. Mais une chose est claire : le lien entre les deux existe bel et bien, et il passe sans doute par la qualité du sommeil lent et le bon fonctionnement du système glymphatique.En somme, mieux dormir, et surtout retrouver un sommeil profond de qualité, pourrait être une piste thérapeutique sérieuse pour soulager certains acouphènes.
  • Comment expliquer le « syndrome du bébé oublié » dans une voiture ?

    02:15|
    Imaginez un matin ordinaire. Vous partez au travail, votre enfant dort paisiblement à l’arrière. La route est la même, la radio aussi. Vous arrivez au bureau, garez la voiture… et soudain, l’horreur. Vous réalisez que vous avez oublié votre bébé dans le siège auto. Comment un tel drame peut-il arriver, même à des parents attentifs ? Les neurosciences apportent une réponse bouleversante : ce n’est pas un manque d’amour, mais un bug dans le fonctionnement normal du cerveau.Ce qu’on appelle le « syndrome du bébé oublié » — ou Forgotten Baby Syndrome — résulte d’un conflit entre deux systèmes de mémoire. Une étude publiée en 2020 dans Frontiers in Psychiatry (« Forgotten Baby Syndrome: dimensions of the phenomenon and new research perspectives ») a montré que ces situations se produisent alors que les fonctions cognitives des parents sont intactes. Le problème vient de l’interaction entre la mémoire de l’habitude et la mémoire prospective.La mémoire de l’habitude, gérée par les ganglions de la base, permet d’effectuer des actions automatiques : conduire, suivre le même trajet, fermer la porte à clé. La mémoire prospective, elle, dépend du cortex préfrontal et de l’hippocampe : elle nous rappelle ce que nous devons faire dans le futur — comme déposer le bébé à la crèche.Le drame survient quand la mémoire de l’habitude prend le dessus. Si le trajet est identique à celui des jours sans enfant, le cerveau bascule en mode “pilote automatique”. Les gestes se succèdent mécaniquement, sans contrôle conscient. La mémoire prospective, qui devait signaler « n’oublie pas la crèche », ne s’active pas. Aucun signal visuel ni sonore ne vient rappeler la présence de l’enfant — surtout s’il dort. Le cerveau agit alors comme si la tâche avait déjà été accomplie.Le stress, le manque de sommeil ou une rupture de routine amplifient ce risque : ils affaiblissent le cortex préfrontal et perturbent la capacité du cerveau à maintenir plusieurs intentions actives en même temps.Selon les auteurs de l’étude, « ces oublis tragiques résultent du fonctionnement normal de la mémoire humaine, dans des conditions où les systèmes automatiques prennent le dessus sur la pensée consciente ». En d’autres termes, le cerveau fait ce pour quoi il est conçu : économiser de l’énergie cognitive. Mais cette économie peut, dans de rares cas, être fatale.C’est pourquoi les experts recommandent des signaux physiques ou visuels — laisser un sac ou un objet personnel sur le siège arrière, par exemple — afin de créer un “rappel externe”. Un simple repère peut suffire à réveiller la mémoire consciente. Parce que, parfois, ce n’est pas le cœur qui oublie, mais le cerveau.
  • Pourquoi sommes-nous accros aux paris ?

    02:35|
    Prenez un parieur face à une machine à sous. Il appuie sur les boutos, les rouleaux tournent, les sons se déclenchent, et pendant une fraction de seconde, tout est suspendu. Cette tension, ce frisson, c’est le cœur du mécanisme cérébral du pari. Ce n’est pas tant le gain qui nous attire, mais l’incertitude. Et la science le montre clairement.Une étude publiée dans Frontiers in Behavioral Neuroscience a révélé que le système dopaminergique du cerveau — celui qui gère la récompense et la motivation — réagit plus fortement à l’imprévisibilité qu’au gain lui-même. Autrement dit, notre cerveau sécrète davantage de dopamine, le neurotransmetteur du plaisir, quand le résultat est incertain que lorsqu’il est garanti. C’est cette attente, cette possibilité d’un gain, qui nous électrise.Les neuroscientifiques ont observé, grâce à l’imagerie cérébrale, que des zones comme le noyau accumbens et le cortex préfrontal s’activent pendant un pari. Le premier gère la récompense, le second la planification et le contrôle. Mais chez les parieurs compulsifs, le cortex préfrontal fonctionne moins bien : il freine moins les impulsions, et la logique perd face à l’émotion. Le cerveau se met alors à répéter le comportement, comme s’il s’agissait d’une substance addictive.C’est ce que montre une autre étude, publiée dans Nature Reviews Neuroscience, qui compare le jeu pathologique à une addiction sans drogue. Les mêmes circuits de la dépendance — ceux activés par la cocaïne ou l’alcool — s’allument lors d’un pari. Le cerveau apprend à associer le risque à une récompense potentielle, et chaque mise devient une promesse chimique de plaisir.Un autre phénomène accentue encore l’addiction : celui des quasi-victoires. Vous perdez, mais de peu ; deux symboles identiques s’alignent, le troisième manque d’un rien. Le cerveau, lui, interprète cela comme une réussite partielle, et libère de la dopamine. Résultat : vous rejouez, convaincu que la chance est proche.En somme, les paris exploitent une faille dans notre architecture mentale. L’incertitude déclenche la dopamine, la dopamine entretient le désir, et le contrôle rationnel s’affaiblit. Ce n’est pas une question de volonté, mais une réaction neurochimique profondément ancrée.Ce que la science nous apprend, c’est que parier revient à dialoguer avec nos instincts les plus primitifs. Et dans ce dialogue, le hasard a souvent le dernier mot.
  • A quoi servent les moments où vous ne pensez “à rien” ?

    02:39|
    Vous connaissez ce moment. Vous êtes dans le bus, le regard perdu à travers la vitre, et soudain, vous réalisez que… vous ne pensez à rien. Pas de souvenir, pas de projet, pas même une chanson dans la tête. Juste… du vide. Ce phénomène, que nous avons tous expérimenté, a désormais un nom scientifique : le « mind blanking », littéralement « l’esprit en blanc ». Et loin d’être un simple trou noir de la pensée, il jouerait un rôle essentiel dans notre équilibre mental.Une étude publiée dans la prestigieuse revue Trends in Cognitive Sciences par Thomas Andrillon et ses collègues a exploré ce curieux état. Les chercheurs ont demandé à des volontaires de signaler régulièrement le contenu de leurs pensées. Parfois, ils répondaient : « rien ». Pas qu’ils n’aient pas voulu répondre : il n’y avait simplement rien à dire. Leur esprit semblait s’être mis sur pause, sans rêve éveillé ni réflexion consciente.Pour les neuroscientifiques, ce vide n’est pas un simple oubli, mais un état mental à part entière. Le cerveau reste éveillé, mais son activité change de rythme : les zones habituellement impliquées dans la réflexion et la perception se désynchronisent, un peu comme une machine qu’on met en veille. Andrillon parle d’un état de vigilance réduite, proche d’une micro-sieste cognitive.Mais à quoi sert ce moment suspendu ? L’étude avance plusieurs hypothèses. D’abord, il pourrait s’agir d’un mécanisme de récupération interne : en cessant momentanément de produire du contenu mental, le cerveau se reposerait, se « nettoierait » en quelque sorte. Ces pauses aideraient à préserver nos ressources attentionnelles, épuisées par le flux continu de pensées et de stimulations.Deuxième hypothèse : le mind blanking servirait de pont entre deux pensées, un instant de transition durant lequel notre cerveau efface la précédente avant d’en accueillir une nouvelle. Ce serait un espace neutre, un sas nécessaire entre deux trains d’idées.Enfin, ces moments de vide pourraient avoir une fonction de régulation : permettre au cerveau d’ajuster sa vigilance, de contrôler ses propres fluctuations internes, un peu comme un pilote automatique qui vérifie ses instruments avant de reprendre le contrôle manuel.En somme, ne rien penser n’est pas une défaillance : c’est une respiration de l’esprit. Une manière naturelle pour notre cerveau de se recentrer, de se régénérer. La prochaine fois que votre esprit se vide, ne cherchez pas à combler ce silence. Laissez-le faire. Ce n’est pas du vide… c’est un moment de pause, profondément humain, et peut-être vital.
  • Je vous présente mon nouveau label de podcasts

    02:56|
    Voici les 3 premiers podcasts du label Audio Sapiens:1/ SurvivreApple Podcasts:https://podcasts.apple.com/us/podcast/survivre-histoires-vraies/id1849332822Spotify:https://open.spotify.com/show/6m4YqFSEFm6ZWSkqTiOWQR2/ A la lueur de l'HistoireApple Podcasts:https://podcasts.apple.com/us/podcast/a-la-lueur-de-lhistoire/id1849342597Spotify:https://open.spotify.com/show/7HtLCQUQ0EFFS7Hent5mWd3/ Entrez dans la légendeApple Podcasts:https://open.spotify.com/show/0NCBjxciPo4LCRiHipFpoqSpotify:https://open.spotify.com/show/0NCBjxciPo4LCRiHipFpoqEt enfin, le site web du label ;)https://www.audio-sapiens.com
  • Comment peut-on rajeunir le cerveau de dix ans ?

    01:55|
    Et si un simple jeu vidéo pouvait rajeunir votre cerveau ? C’est la promesse inattendue d’une équipe de chercheurs de l’Université McGill et de l’Institut neurologique de Montréal, qui vient de franchir une étape décisive dans la compréhension du vieillissement cérébral.Depuis toujours, on pensait que le cerveau déclinait lentement avec l’âge, inexorablement. La mémoire se fragilise, l’attention se disperse, la vitesse de réflexion diminue. Et derrière ce lent effritement, une molécule joue un rôle crucial : l’acétylcholine. C’est elle qui permet aux neurones de communiquer, de se concentrer, d’apprendre. Or, sa production baisse naturellement à partir de 40 ans. Aucun médicament n’avait jamais réussi à la relancer. Jusqu’à aujourd’hui.Dans leur étude, les chercheurs ont recruté près d’une centaine de volontaires âgés de plus de 65 ans. Pendant dix semaines, certains ont suivi un programme d’entraînement cérébral intensif sous forme de jeu vidéo, conçu pour stimuler la rapidité, la mémoire de travail et la concentration. Les autres jouaient à des jeux classiques, sans visée thérapeutique. Avant et après l’expérience, tous ont passé des examens d’imagerie cérébrale permettant de mesurer l’activité du système cholinergique, celui qui produit justement l’acétylcholine.Les résultats ont surpris tout le monde. Chez les participants qui s’étaient réellement entraînés, la production naturelle d’acétylcholine a augmenté d’environ 2,3 %. C’est peu, mais c’est énorme : cela correspond à peu près à la perte naturelle observée au fil de dix années de vieillissement. Autrement dit, leur cerveau s’est comporté comme celui d’une personne dix ans plus jeune. Une première absolue dans l’histoire de la recherche sur le vieillissement cérébral.Ce qui fascine les scientifiques, c’est que cette amélioration n’est pas due à un médicament, mais à une stimulation cognitive ciblée. Le cerveau, même vieillissant, reste plastique : il est capable de se réorganiser, de relancer des circuits endormis, pour peu qu’on le pousse à sortir de sa routine.Bien sûr, l’étude doit encore être confirmée sur un plus grand nombre de personnes, et sur des durées plus longues. Mais elle ouvre une perspective vertigineuse : celle de pouvoir « réactiver » le cerveau par l’entraînement, comme on renforce un muscle. En d’autres termes, le vieillissement cérébral ne serait peut-être pas une fatalité — juste une question d’exercice.
  • Quelle fleur est plus efficace qu'un somnifère ?

    02:19|
    Il existe une fleur capable de rivaliser avec les somnifères : celle du bigaradier. Derrière ce nom un peu oublié se cache l’oranger amer, un petit arbre originaire d’Asie, sans doute de la région de l’Himalaya. Introduit en Méditerranée au Moyen Âge, il s’est acclimaté sous le soleil de Séville et de Grasse, où ses fleurs blanches, d’un parfum enivrant, sont devenues le cœur de la parfumerie et de la phytothérapie. On la connaît mieux sous le nom de fleur d’oranger.Mais au-delà de son odeur douce et familière, la fleur du bigaradier possède des vertus étonnantes sur le sommeil. Depuis longtemps, les infusions de fleur d’oranger apaisent les enfants agités et calment les nerfs avant la nuit. Ce que la science confirme peu à peu. En 2023, des chercheurs iraniens ont mené un essai clinique sur des femmes dont les bébés étaient hospitalisés : boire chaque soir un distillat de fleur d’oranger a significativement amélioré leur sommeil, comparé à un placebo. Les participantes s’endormaient plus vite, se réveillaient moins souvent, et déclaraient se sentir plus reposées.D’autres travaux, menés sur des modèles animaux, sont encore plus surprenants. Un extrait de fleur d’oranger, administré à des souris privées de sommeil, s’est révélé plus efficace pour réduire leur anxiété qu’un médicament bien connu : le lorazépam, un somnifère puissant. Les chercheurs attribuent cet effet à plusieurs molécules actives : le linalol, le nérolidol et divers sesquiterpènes, capables d’agir sur les récepteurs GABA du cerveau, les mêmes que ceux ciblés par les benzodiazépines. En somme, la nature imiterait la chimie, mais sans ses effets secondaires.Cependant, ces résultats doivent être interprétés avec prudence. Les études restent encore peu nombreuses, souvent limitées à de petits échantillons. Et si la fleur d’oranger favorise l’endormissement, elle ne remplace pas un traitement médical dans les cas d’insomnie sévère. Elle agit comme une aide douce, idéale pour calmer les tensions, réduire l’anxiété et rétablir un cycle de sommeil perturbé.Boire une tisane de fleur d’oranger avant le coucher, respirer son huile essentielle ou l’utiliser en diffusion pourrait donc être une manière simple de renouer avec un sommeil naturel. Le bigaradier, autrefois symbole d’innocence et de paix, redevient ainsi ce qu’il a toujours été : un messager de sérénité, plus apaisant qu’un somnifère, et infiniment plus poétique.
  • Quelle est la durée de sommeil parfaite pour échapper au déclin cognitif ?

    02:01|
    Pendant des décennies, les chercheurs ont cherché à déterminer la durée de sommeil idéale. En 2023, une vaste étude parue dans la revue Nature Aging a apporté une réponse inattendue : sept heures par nuit semblent être la durée parfaite pour échapper au déclin cognitif passé 40 ans.Les scientifiques ont analysé les données de plus de 500 000 adultes âgés de 38 à 73 ans, issues de la base britannique UK Biobank. Leurs performances cognitives, leur humeur et même la structure de leur cerveau ont été comparées à leurs habitudes de sommeil. Les résultats sont clairs : trop peu ou trop de sommeil nuisent tous deux à la santé cérébrale. En dessous de six heures, les capacités de mémoire et d’attention s’affaiblissent ; au-delà de huit heures, le cerveau montre également des signes de fatigue. Se situer autour de sept heures constitue donc un équilibre subtil entre récupération et vigilance.Les chercheurs ont constaté que les personnes dormant environ sept heures par nuit présentaient de meilleurs résultats aux tests cognitifs, mais aussi des volumes cérébraux plus élevés, notamment dans l’hippocampe, siège de la mémoire, et dans le cortex frontal, essentiel à la prise de décision. Dormir trop peu provoque une accumulation de déchets métaboliques, comme les protéines bêta-amyloïdes, que le cerveau élimine normalement pendant le sommeil profond. Dormir trop, à l’inverse, pourrait être le signe d’un sommeil fragmenté ou d’une pathologie sous-jacente.Cette découverte bouleverse notre compréhension du repos nocturne : elle suggère qu’après 40 ans, la qualité du sommeil compte autant que sa quantité. Avec l’âge, le sommeil profond diminue naturellement, et le maintien d’un rythme régulier devient crucial. Les chercheurs insistent : il ne s’agit pas seulement de dormir longtemps, mais de bien dormir.Le message est simple : viser sept heures de sommeil de qualité chaque nuit, à heures fixes, pourrait préserver la mémoire et la clarté mentale jusqu’à un âge avancé. L’étude ne démontre pas une causalité absolue, mais elle trace un repère précieux pour vieillir sans déclin cognitif marqué. Le sommeil, longtemps considéré comme un luxe, s’affirme ici comme une véritable médecine préventive.