Training for autonomoy & electronic lookouts

Season 3, Ep. 5

This episode looks at attracting youngsters into shipping with an apprenticeship focused on autonomy and unmanned ships and how technology can be the eyes and ears of a ship officer on the bridge (as a proposed electornic lookout function).


Gordon Meadow, CEO, SeaBot XR

Eero Lehtovaara, Head of Regulatory Affairs, ABB

Industry updates from

Nick Chubb, Founder, Thetius


Craig Eason, Fathom.World

Full transcript below

Craig Eason

 Hello and welcome to the Aronnax Show. This is a podcast looking at the shipping and maritime space. I’m Craig Eason, and I own and edit the Fathom World news site focused on the changing aspects of our industry.

I’ll tell you something about myself quickly. I’m an ex-seafarer. I worked as a navigation and deck officer, deep sea on the bridge of many different ship’s and it was a career I was and still am proud of, even if I did not do what so many of my fellow apprenticeship friends did at the time and go on to become master mariners.

I chose to go into journalism instead.

Over the years the role of the mariner has changed. You can see many articles on Fathom World and find episodes of the Aronnax Show about this transformation as new levels of connectivity and technology have developed.  Society itself is trying to tackle this change too, and we have a range of discussions in many corners of many of our industries about autonomy, autonomous systems and so on.

Now, I’ve quite often railed against those headlines that state that fleets of ghost robot ships are coming. These are sensationalist headlines. Reality has never got in the way of a good headline.

But having said that, the way technology is going and with the discussions at the International Maritime Organization on which regulations prohibit their appearance, we know that something is changing. What is happening though is technology is creating a new dynamic onboard vessel, and yes, they may coalesce into increased autonomy, and even unmanned ships in some corners in the future. But today on this episode of the Aronnax Show I want to look at two things that are happening that are more immediate next steps.

Two things are happening on a regulatory front now that I think make a big difference. The first is a pair of submissions that are going into the regulatory body the International Maritime organization that is asking it to consider the idea of an electronic lookout function, something that those supporting the idea believe is a required part of having periodically unmanned ship bridges. And the word ‘periodically’ is important here.

The proposal has a lot to do with all round video cameras and elephant ears on a ship. More on that later


Now, my cadetship was in the 1980’s It involved learning morse code, and how to use Decca and even Loran-C. I remember sat in a former world war military bunker style building in Plymouth England looking at the swirling green radar screens and a Decca chart with its multicoloured tramlines. And yes, the sextant. That’s all history or nearly all, history.

Today’s apprentice in the UK still must learn about seafaring and some of  the skills of electronic navigation.

But it’s getting even more complicated, and now there’s the growing awareness of autonomy. So how do we get kids to leave school and join an industry which on the one hand has been an unpopular choice in recent years, but has the potential to be so so different.

In the UK, a group has come together to look at how an apprenticeship can be developed that caters for this. It’s looking at the development of a new type of apprenticeship bearing in mind the increased amount of autonomy that is appearing in civilian and naval craft. That’s not just autonomy on the ship for onboard crew, but also for remote operations. The group was announced last month and consists of the UK’s Royal Navy, the geo-data company Fugru, the UK’s National Oceanography Centre, marine robotics business Ocean Infinity. And it is being chaired by UK advanced training business Seabot XR.

Gordon Meadow, CEO Seabot XR told me about the plans and why it is important:

Gordon Meadow, SeaBot XR

The apprenticeship is a response in industry need. Operators want to operate in a responsible way, and they have a workforce that has been built on experience at sea, and they're now being given the opportunity to use autonomous systems and new ways of working. So, there's a gap, and this apprenticeship will look towards identifying that skills gap, mapping those competencies and creating a new workforce with more enhanced skills, but this is simply about training the people who are going to be operating vessels today, not about the future, not about, you know, sort of this kind of fanciful idea that, you know, all ships will be autonomous in the next 10 years. This is this is simply about taking a responsible approach to the migration of the workforce, and the workforce is underpinned by seafaring and STCW qualifications -  really that's paramount that experience. Now projecting forward 30 -40-50 years any occupation will change, you know, any occupation will change will you need to have gone to see in 50 years’ time, who knows? Bu  for the time being the key migration is of this is the current and existing maritime workforce and that knowledge that neds to come with it - that experiential knowledge.

Craig Eason

Now autonomous craft that the apprenticeship group are looking at are up to around 24 m in length, but there are plans to go bigger, with Ocean Infinity, one of the apprenticeship development group partners already looking at 70 m vessels This apprenticeship looks at it from an operational point of view from how you control them, how you maintain control, maintenance issues.

It's important to realise that this programme to develop an apprenticeship is not about international shipping, that requires, as Meadow says work at the IMO on the seafarer training requirements. Many people agree that these need updating, but it would be an enormous task as any changes need to encompass shipping for today as well as the future, and everywhere in the world.

Gordon Meadow, SeaBot XR

This UK apprenticeship isn't, isn't based on developing international standards around the world. This is responding to responsible operators operating their craft in and around UK waters and more broadly. But this will capture the operators’ requirements, which we can then feedback up through the system, for the likes of the maritime and Coastguard agency and say look, actually, these are the competencies we have identified through this group.

There's also a top-down approach where the MASSPpeople group was launched - I think two weeks ago now - where to Seabox XR, Fugru and the Maritime & Coastguard Agency are founder members. That group consists of a number of flag states and which will look at the standards required internationally, and try and benchmark those standards, and then share those standards, and create new standards and then create recommendations to go to IMO and say, "Look, this, these are the recommendations, we think that should be added in terms of competencies to STCW".


Craig Eason

In my interview with Gordon Meadow, he kept the focus on the people, and the need to ensure it is about skills, not systems, robots and software. In his opinion we all need to challenge a rhetoric that machines are good, and the human is bad. Seafaring skills remains as crucial as ever.

But it is about a migration of the workforce, about writing down the new skills that existing seafarers will need.

Gordon Meadow, SeaBot XR

And that's, I guess, that's, that's being looked at, to some extent separately, by the you know, but by Maritime UK, they MNTB and that the Maritime Skills Commission, we’re interested in looking at a particular new developing occupation, which is quite a sexy occupation. I think, you know, I think I have always found it to my amazement, that the, there's this sea blindness, and I think, I think they're really trying to make an effort are really trying to make an effort in the UK to be able to remove this Sea blindness and make the industry more attractive to young people and help them to help them to realize that it's there, and this has huge potential and huge, huge opportunity for careers.

I know that one champion, one person showing this is Sarah Kenny, from BMT. She's really trying to shine the light and shine a light on this. So, for me, there is a huge, huge opportunity for young people on this to get into a career that would be, you know, a fascinating career to get into it's a new avenue into maritime, and it's also a new avenue into maritime, which would provide perhaps a similar appetite to get involved in for both men and women. And there's two there's a there's a, there's kind of there's a gender equality issue too, as well. And as well, I think there are other opportunities from other people in other sectors who may not have considered career maritime before such as those, you know, those not perhaps seen as physically able to be able to perform.

You know, it's not mandatory to to fit a wheelchair ramp on a ship necessarily, but it will be on a remote operation centre. So, so there are lots of opportunities for new entrants into it. I think, with some of the underlying skill requirements you will need as operations centres move forward. And the complexity of them, it will attract other people in the industry. And will there be jobs? Yes, there are because there's already a massive shortage in the industry of seafarers, as we as we will know. So, will there be jobs going forward? Absolutely. 

Craig Eason

Gordon Meadow from Seabot XR on the evolution of the seafarer and a new breed of people who will need to work in operation centres, ones who will not necessarily need to walk on the deck.

Now while Meadow says these UK initiatives on training and apprenticeship are focused on the new generation, there is still the existing workforce at sea, those spending months on end on a ship. Those on a bridge watch spend those months with a broken sleep pattern, four-hour bridge watches once every twelve hours, with other duties expected to be completed in the non-watch periods. And this is where the idea of a Bridge Zero function first materialised. Yes it can be seen as a step towards unmanned ships, but it has its initial purpose on welfare and safety.

It is the idea that under certain times a bridge can be left unmanned while the vessel is underway.  Those conditions would have to be very specific- clear visibility, good weather, zero traffic in the proximity etc.

Now to allow that situation to be permitted the International Maritime Organization is being asked to accept technology as a suitable replacement for the eyes and ears of the watch officer or a watchkeeper.

The proposal is going to come from the European Union into IMO’s Maritime Safety Committee, but the idea has been developed in Finland.

One of the proponents is Eero Lehtovaara, who is head of regulatory affairs at engineering firm ABB.

I have spoken to Eero, a former maritime officer and captain, many times of the years as the ideas for autonomy have developed, looking at how digitalization and autonomy can increase safety for those onboard as opposed to the idea of taking people off the ship.

It is an important distinction for Eero and helps frame the discussion. Is digitalisation and autonomy about unmanned ships per-se, or about increased safety and welfare for those on the ship?

 Eero Lehtovaara ABB

If we're starting to, to do something that will even at some level substitute the human, even if it will be for a shorter period of time, we need to be first of all, we need to be sure that we are right that it's actually better.

But then we know that that is something we call the social licence to do to to operate. Meaning that you and I, when we see technology, we expect that technology to be way better than what we can do. And there's this kind of expectation, meaning also that on a modern-day cruiser, or car carrier, you could say that you don't have the best visibility straight behind you. There will be an expectation of full coverage of 360 degrees, and continuous scan and so on. We also learned and this is obviously something where we talk about the scientific research that is far outside of our area of competence.

I mean, ophthalmologists, who research the eye, and so on, so we used material that we can find on the subject. And then it was quite interesting in the sense that, first of all, if we are focusing the eyes somewhere, we physically tend to lose everything around us. And you can only focus. I mean, if you're focusing somewhere far, then you tend to lose things that are happening close and vice versa, and so on.

Also, if you're focusing on a point far ahead, you're not only lose movement and seeing on the periphery, but that you're very early, also starting to lose colours, which was news for me. Meaning that if you have a theoretical situation where you have a ship coming against ahead of you, or you're in a collision course head-to-head, you focus on that ship. That means that you stop seeing things around you. Obviously with machine learning machine machines doing that, you would not have that issue because they would monitor continuously around you.

Craig Eason

And this is where Elephant Ears and the Snellen chart – you know it as that pyramid of letters at the opticians that decrease in size as you read down. For an optician, a person with normal eyesight has an eight on the Snellen scale and a seafarer must pass an eye test and get more than five. Hearing is also tested.

Now hearing is one area where the regulations already allow for technology. This is the Elephant Ears. Quite a few ships are built today with totally enclosed bridges, that means the bridge wings are not out in the open air. One of the requirements under international rules is for ships to have specific audio signals (such as in fog) and an officer or watchkeeper in a totally enclosed bridge will be unable to hear those signals. Hence the development of a technology that is basically a microphone outdoors feeding into a speaker or alarm system indoors.

Eero Lehtovaara points to this as a first step in how the electronic lookout function would work, as this and the required cameras that would point all around a vessel would be coupled to a system capable of recognition that there is something there and then sounding the alarm.

Eero Lehtovaara ABB

We talk about three different levels or stages. What they are calling the DRI - the detection, recognition and identification. And what we presented in the electronic lookout function is really the D part -detection. So, the aim is to detect that there's something else outside than water. Period. In its lowest level that will make an alarm, and someone, a human will come up and then make the recognition and the identification and after that the decisions.

I mean, at this stage, I would say that machines are better today at detecting than people are, but people are way better in recognition than the machines are today and able to make conclusions and take that further into decisions and in actions. So, obviously, we see that if you're ever going to have an unmanned ship, they need to be able to do all of these, based on first detection, what is it what it's going to be doing? How is that reflected into col-regs and so on and so on. But at its lowest level, in order to be able to fulfil the requirements of B-0, just detection is enough. If we can detect that there are things there, then we get the alarm, and somebody is coming to the bridge. And then we will be able to make the necessary right decisions then

Craig Eason

Eero Lehtovaara on the possible way a manned ship could occasionally sail with an electronic lookout function allowing for a bridge or wheelhouse to be unmanned, while the watchkeeper and officer of the watch do other things.

While this potential work at the IMO on the electric lookout function may be for a stand-alone alarm system connected to the OOW who remains on standby if an alarm sounds, there is no doubt this function can be connected to other bridge technology. In its simplest form it is a series of high-resolution cameras giving an overlapping 36o degree coverage of a ship potentially as far as the horizon, going forward this can be part of the further digitalisation of a ship to give even greater situational awareness, with the lookout function an integral part of a digital sensing brain also linked to the radar, GPS, electronic displays and charts as well as other systems.There are smaller vessels already doing this, just look at the Mayflower project with an IBM brain inside is.



More Episodes


Air bubbles and nuclear hydrogen

Season 4, Ep. 1
GuestsRodrigo Bermelho/ValeNoah Silberschmidt/SilverstreamBrett Rampal/CATF, Links: Vale pushes giant bulk carriers down greener path - ( we use nuclear power to make hydrogen fuels for shipping? - ( Government eyes nuclear powered merchant vessels with late consideration of IMO codes - ( Aronnax episodes about wind assist technologiesAronnax: Pressure and propulsion - ( S1-3 Wind Part 1 - The resurgence of sail - ( S1-4 Wind Part 2-eConowind - ( S1-7 Wind Part 3 - It's not as easy as you think - ( transcriptRodrigo Bermelho/ValeThe fuels that we are studying like methanol and ammonia for these vessels that are already have the space we can achieve close to 80% emissions reduction on existing ships. So we believe that we have an important competitive advantage to reduce emissions on existing ships. I think this is an important goal that we have.Brett Rampal/CATFAs one of the world's largest sources of clean, firm energy. Nuclear energy offers this really, really useful base load - always on sort of electricity - that when paired with electrolysis, really turns production into a more similar sort of production to existing field production.Craig EasonHello, again, this is the Aronnax podcast, a show that focuses on the development and transformation of the maritime and ocean space. I'm Craig Eason. And if you don't know me, I'm a former seafarer from what seems a long time ago, who became a journalist, writer, editor, and now podcast host.On this podcast, we've covered a number of technologies and ideas as well as policies and projects that are focused on the decarbonisation of the shipping industry. Shipping the backbone of global trade is needed to give us the things that we want at a price we expect. But while it's a vital component of how we live our lives, it like other industries and parts of societies is under a lot of pressure to decarbonize Now decarbonisation and shipping is taking two distinct steps, the first phase is focused on doing something with the existing ships. And then there's the phase looking more perhaps at the new ships, the newbuilds. Some of these existing ships are large, very large and quite young, meaning that there'll be sailing the oceans for many years, and at the moment, they nearly all burn diesel fuel. And this, of course, pumps out CO2 into the atmosphere. There are a number of technologies being rolled out to help reduce this. And there's wind assist propulsion, and I've covered this extensively in earlier episodes of the ironic show, and I'll put a link in the show notes to some of them. But then there's other technologies to help ships get routed more efficiently. Some to say that more optimum speeds and understand when hulls need cleaning, and then there's technologies that push air bubbles under the hull.Air bubbles under the hollow air lubrication as it's known, has been developing for a number of years and as the name suggests, a layer of small air bubbles are continually pushed under the hole to glide between Hull and water, thus reducing the friction force that the ship and its engines need to overcome to sail forward. less friction means less power needed on an engine and therefore less fuel and fewer emissions from the funnel. Now in Brazil, one of the world's largest mining giants, Vale, is also one of the largest charters have large drive bulk tonnage. There are huge dry bulk vessels and Vale controls a lot of them and this is not only leads tosignificant fuel use but also significant emissions. The company now has an ecoshipping programme, as it called it and it's taken two extraordinary steps this year, said to rotor sales on one of the ships and their lubrication systems on another. Both vessels are now trialling the systems with Vale considering rolling them out to other vessels on their fleet that they charter. These two ships are the biggest yet to have either of these systems but also demonstrates how charters are influencing the shape of shipping.Rodrigo Bermelho is Vale's shipping technical manager. So I spoke to him and to Noah Silberschmidy, Silverstream Technologies, which has installed the lubrication system on the Sea Victoria about the installation and trial. But I started by asking Rodrigo about the Brazilian giant's Ecoshipping programme, what that entails.Rodrigo Bermelho/ValeAbout four years ago, we have established within Vale thisR&D programme that we call eco shipping. It is a programme to position Vale in relation to the IMO ambitions and the Paris Agreements and Vale on sustainable targets that we have. And we think Ecoshipping we have drafted a clear low carbon pathway and this low carbon pathway starts with energy efficiency. We believe there is- actually we have a first wave with invalid vessels that the economy of scale we have very large vessels and they have captured important gains, and we believe the second wave is related to energy efficiency and this wave is not finished, there are a lot of energy efficiency gains to be captured. And these energy efficiency gains they will allow us to reduce the demand for fuel and then make a transition to alternative fuels low carbon fuel. So it's a very important step that we have- these energy efficiency gains. And based on that we have scanned, the markets and the innovation technologies that are under development to see what are the energy efficient technologies that can deliver higher against. And here we matched the air lubrication technology. I think there are few technologies today.There are many, many, many technologies related to energy efficiency, but not all of them deliver high gains. And these are important ones that we must capture. So once we had identified air lubrication as one potential technology, we reviewed the technology because there are different ways to do air lubrication. And we match them with Silverstream - we have a specific way to do that, and one that has a lot of data that were provided to us. And we're able to evaluate that initial stage the technology, and then starts our innovation journey. And we did a lot of engineering that- It is two years that we have been working closely together with Silverstream. Once we have identify them as potential makers for these solutions. We did a numerical analysis, various numerical analysis, we went to HSVA model basing in Germany, we have test in scale. First, we have test the release the units in full scale in their cavitation tank, and then we have tests, in scale model, the full vessel, with our lubrication devices, to have more precise information about the gains that were available. And once we got that information, and we confirm his idea that was a technology with high gains on energy efficiency, then we moved to the pilot stage. And while all the fabrication of the equipment and studying on the vessel, that's the stage we are today,Craig EasonHow would you look at the companies that you you chose? There's a lot of companies, a lot of engineers, there's a lot of startups, there's a lot of businesses that are clamouring for the attention of ship operators, managers, companies, like yours aren't there. And I'm sure if you gave everybody your business card, there'll be knocking on your door as soon as possible to say, hey, I've got the answer for all of your problems. Here's my silver bullet idea. What kind of advice would you give to companies that have got ideas and solutions? What kind of advice have you got for them, before they even come knocking on your door?Rodrigo Bermelho/ValeMy advice would be be prepared to partner and share information. I think this is one thing that we got from Silverstream from the very beginning, they have partnered with us and they have incentivized that we go through all this process- numerical analysis and test -to validate the technicals- It is very difficult to deal with any maker if we are not able to validate their claims. And when we talk about innovation, we must acknowledge that sometimes we are talking about new theories or new ways of testing and there is some scope for it to be done that. So it's important that they realise that there is a pathway there is a journey together to validate the claims so that we can finally move to the real thing.Craig EasonSo this vessel, Sea Victoria, has now arrived in Brazil, it's left I presume it's recently left the dock where it had the system, retrofitted. It had the tests done, it's now sailed. It's sailed. Presumably as it sails towards Brazil. It sailed in ballast, but you've able to test the system in ballast is it went west. Can you tell me a little bit about how those tests went and also about the responsibilities and role of the crew on board when you've got a novel technology like that?Rodrigo Bermelho/Vale Yes, this is the first leg the first voyage the system is working. But we we think it's very premature to have any results. I think we are adjusting the system and we are trying to reach the maximum performance that we aim. I think we did a very detailed work before installing and we have solid numbers and now we have to take time to validate that we have assigned Lloyd's Register for our one year long term. Perfect assessments We have installed high frequency data collectors, sensors, and we'll have a lot of information to process within this one year of operation to to finally confirm and even exceed the expectations that we have with this savings. So, I would say that for the moment, we are very satisfied and we continue to work because innovation is just beginning. There is a long way in terms of the the work crews has to do, indeed, dealing with new technologies that are challenged and, of course, new process to be performed on board. One thing that we did that's I also recommend to everyone that's in doing new technologies to perform hazard identifications workshops, we did hazid/hazop workshops involving classification societies, the makers - Silverstream, the shipyard, ship designers ship operators, P&I Club, we brought everybody around the table we have, we were, honest enough to points all the new things and the possible problems that could arise from this operation, and try to identify actions to solve that or to manage the new process. So all this is a is a list there is a shared responsibility, among all parts, which one had to do the actions. And now this is also in cost of implementation and test and reviewing.Craig EasonLet me turn to Noah now because no, I've known you for a number of years now I've seen how silverstream has grown and developed since it concept I was talking to you. At the time, just before you had the first system installed on the Amelienborg. How many systems have you not got onboard vessels or contracted on board vessels?Noah Silberschmidt/Silverstreamas of today, we have 59, we provide a solution, both to newbuilds, and we're the only one that's doing retrofit solutions. The retrofit solutions are extremely important with new regulation on CII and EEXI. And we are at silverstream very focused in providing a product to help the industry, help owners that otherwise would have stranded assets, and try and make make them able to and have them give them a licence to to basically sail after 2023 regulatory environment. So it's a very important part of our strategy to do so. And we're scaling up part of Silverstein's business, just to do retrofits fleet deals. And that is, of course, something we're looking to do with all our.....currently, I think we only really have tier one owners, if you look Vale, Carnival, Shell and so on so forth. But it's something we are looking to be able to service the whole industry, whether them being,whatever you how want to grade them in tears. But we're also working with new builds, designers, new build teams, new build programmes and that's another way for Silverstream to be able to, let's say affect the market more. So yes, recently. I mean, three years ago, we did a fleet deal with Grimaldi which was 12 vessels. And then most recently, we did a fleet deal for Shell last year on a number of LNG vessels, which you can see on the website, which has got a lot of potential options attached to it. And then we have just now been involved in a lot more activities in 2021, which has not yet published.Craig Easonis the installing a cyst retrofitting a system is Is that likely to be a lengthy process, with each installation needing to be bespoke for this particular vessel designed around the vessel the number of air compressors that need to be installed on board, the positioning of where the air bubbles flow out from under that under the hull? Have you looked at how you can actually shorten that period of design and installation of a system?Noah Silberschmidt/SilverstreamOne of the workstreams we're currently doing at Silverstream is that we have a whole standardisation programme. So that means that we are working now with a fixed set of compressor types and standard systems. So if you tell me that you have a certain vessel, we are able to respond very quickly on single retrofit installation, we can will six month notice instal that, clearly, we would like to have a bit more time available to us, so we can resource it properly. But we are we are now ready for a client if the client is coming to us today and wants to do 40 retrofits over a period of five years. That is something we are currently set up to do.Craig Easonwhen it comes to insurance of new technologies. As with with 50 installations, and no incidents, there's a there's a certain pedigree that you're building building up here, but always the installation of new systems onto ships .and perhaps I could take this question to Rodrigo, about putting a new system onto his ship. When you go to your insurance company. They're going to look at you and think, okay, what's the additional risk here? Could you tell me a little bit about any conversations you had with the insurance companies, to explain to them what it was you were doing and what it entails?Rodrigo Bermelho/ValeYes, for Craig, yes, we have involved with P&I Club from the very beginning. And of course, we have covered the new technology and have ensured some aspects of this new technology on boards. Now our coverage. And as I have mentioned, we also brought the P&I Club to discuss together with the other stakeholders, potential risks that were in the project. So they were around the table when we did the hazid workshops. And I think that was a great partnership that we had with the steamship P&I Club. They were very competitive, they brought good insights. And I think this is building also a relationship that's needed cooperation that's needed when we talk about new technology and innovation.Craig EasonAnd you've said that there's the potential for the systems that you're installing now, the air lubrication and the and the the rotorsail system for them to be installed on the ships as well. Have you Have you discussed that further? Have you got a timeline for when that might start to happen?Rodrigo Bermelho/ValeYes, as I have mentioned, we have this low carbon pathway for shipping. Energy Efficiency plays an important role to demand the fuel consumption. Maybe you are aware, we have a lot of very large ore carriers that were designed as LNG ready. So 77 of these vessels were designed and built for future retrofits of LNG systems, so they have compartments dedicated compartment for LNG fuel tank for a round voyage and within our programme, we are working to develop other fuels for this space to turn into a multi-fuel compartment.So we have a project for a multi-fuel tank. One tank that could store ammonia, methanol, LNG. This is an important piece of our strategy, and the technologies - here the lubrication and also the rotorsails- they were designed it on these vessels- very large ore carriers. We have selected one Guiava-Max- that's 325,000 dwt. There are 47 vessels of this class, and 60+ vessels, the Vale-max class 4000, 000 dwt. These technologies they way we have designed them it's very easy to escalate the system here to all the vessels we are talking about. But it's a question at first to to validate the results, so we will go through these one year assessment to validate and refine the solution. Of coursewe have expectations to exceed the results that we have and I believe that the technology will improve and we can in the future have better gains, so, the pilot is for that as well. And once we we are comfortable with these gains that we can have, they will allow us to go for a more comprehensive solution on installing energy efficiency equipments on vessels, reducing the demand for fuel and going to alternative fuel solutions and fuel that we are studying like methanol ammonia for these vessels that are already have the space we can achieve close to 80% emissions reduction on existing ships. So we believe that we have an important competitive advantage to reduce emissions on existing ships. I think this is an important goal that we have.Craig EasonThat was Rodrigo them Hello from the Brazilian mining giant valet talking to me about the company's plans to reduce the emissions on the giant bulk carriers its uses and some other technologies that they're using to achieve it. And in terms of future fields, I was particularly interested in the idea of a multi fuel tank which can be used on board for different fuel types. As shipping moves into its next era. When fuels like methanol, hydrogen, ammonia, and biofuels will rise. The discussion about future fuels is a heated one, and there are proponents shouting louder and louder about specific solutions. On a personal note, I don't see why one fuel should win over the other just yet. different markets in different regions may have different answers, but one thing is for sure, there's going to be a need for more of it to be made. If we assume that part of the shipping industry will require green hydrogen and green ammonia, which is made from the hydrogen then industry needs to look at how the electricity is sourced. The most talked about sources are green electricity from wind power or solar power, possibly wave and tidal in the future to then there's the debate about the value of blue hydrogen and whether this is the transition to green. Blue hydrogen is where the hydrogen is made through Steam reformation, and the co2 generated is recycled or stored through CCS. But a recent paper in the US has pointed to another source of electricity to make hydrogen nuclear power. In the US lobby group, the Clean Air Task Force issued a paper last month suggesting that as nuclear power generates baseload electricity, it's an obvious source of power to make hydrogen for society. nuclear power stations already use significant amounts of hydrogen in their chemistry and water cooling. But this is currently sourced through the steam reclamation process of natural gas. There are now trials in the US and proposals in the UK to develop hydrogen from nuclear power and use it specifically in hard to abate industries such as shipping. The Clean Air Task Force paper was authored by its nuclear power expert, Brett rempel, I got in touch with him and I asked him about the nuclear industry in the US and its existing use of hydrogen. This is set to change. And the first demonstration projectsBrett Rampal/CATFthe reactors nuclear power plants around the world that use hydrogen in their operations are usually sourcing that steam methane and refined hydrogen in their in their operations. Right now, in the US, we have multiple demonstrations for demonstrations and nouns, the one with the location, as you know, just recently been confirmed by Exelon of nuclear hydrogen electrolysis demonstrations supported by utilities in the Department of Energy. The Exelon demonstration is going to be at the Nine Mile point, nuclear reactor, nuclear power plant, excuse me. And the existing power plants use the hydrogen in chemistry control and their water in some reactors. And in others, they use them to cool the generators. So keep the generators cool. So that that is a not an insignificant amount of hydrogen being used by the existing reactor fleet around this country. And so that's why a lot of these utilities and the Department of Energy is looking at the opportunities for sort of pairing the existing user which is also a clean energy generation source to produce the commodity that it's using. And the paper also alludes to a more advanced sort of electrolysis technology that's currently being studied and researched and even demo in some places. And there's high temperature steam electrolysis technology also tends to lend itself very well to nuclear technologies with which can offer a high temperature steam product at the end of its energy or in its energy generation cycle.Craig EasonWhat what's the benefit of building an electrolysis subunit to a nuclear power station compared to building it close to a wind power station or a solar panel? what's the what's the benefit of the hydrogen in this discussion compared to solar or wind generated electricity?Brett Rampal/CATFSure, well, I mean, depending on your region in your area, the option for pairing electrolysis with renewables might be, you know, the best option for you but for some reason There's some areas that just might not be possible for a area and density sort of need renewables while a great and growing source of our electricity in this in you know, in this global economy they tend to be relatively dispersed not take up a little bit a lot of land use the opportunities for nations or locations that are very reliant on marine shipping, such as Pacific island nations or you know, that all have land use me are problems land density problems, would probably struggle to produce or build out the needed renewable infrastructure to support decarbonizing both their electricity and expanding to produce additional zero carbon fuel sources. So from that standpoint, it offers a different side of the the teeter totter on renewables there. And then additionally, as as one of our the world's largest sources of clean, firm energy. Nuclear Energy offers this really, really useful base load always on sort of electricity that can, when paired with electrolysis, really turns production into a more similar sort of production to existing fuel production. Most fuel refineries and fuel production operations work most economically and efficiently when they're producing fuel, not when they're not producing fuel. So pairing electrolysis technology with an always available clean source of energy or electricity, helps support overall economic production of the zero carbon fuels.Craig EasonAnd in terms of the the location of nuclear power stations there may have this role, but most of them seem to be located next, next, or very close to water, large water sources because the amount of cooling water that they need, so they tend to be next to water, but I don't perceive them as being very close to ports. That question Can at that point leads to the if you if you can get the hydrogen electrolysis located next to the nuclear power station. So you've got that you're What about that link between the hydrogen that has been generated or ammonia or whatever product it is, and the actual end user?Brett Rampal/CATFSure. Well, you know, in the United States, we do have some existing nuclear power plants that you know, are not located directly next to ports, but are located nearby and the existing us pipeline infrastructure is extremely robust. And the opportunities for either hydrogen blending or hydrogen injection directly into dedicated pipelines for shipment and production, or are transitioning existing pipelines over to new operations with retrofit and upgrade, of course, those sort of opportunities, lend itself well for a gas commodity like hydrogen or ammonia. And when you're also talking about the next step, which our paper talks about, in terms of using ammonia instead of hydrogen, there is an existing ammonia transportation and production, market and infrastructure globally around the world. So the the distance from a quote unquote, large traditional port might not be super challenging for an existing nuclear power plant that might be located on the Gulf of Mexico or along the Mississippi River, if they could leverage existing transportation infrastructure for one of these, you know, technology for one of these commodity streams.Craig EasonThe obvious question is really, why not just put the nuclear power station or the nuclear power unit directly onto the ships, the in the US there was the Savannah and the Russians have got a large number of icebreakers in in service for many, many years. And of course, they had one deep one large container vessel kind of icebreaking container vessel that was is still nuclear power, I believe it's still actually in service. And then of course, there's all the military vessels both in the US and Russia and elsewhere that have got nuclear power plants on board, some of them have gone to nuclear power plants, I believe. And I know that this is a discussion that has also risen again, in maritime circles about the option of putting some of the developing technologies for nuclear power onto ships and star and using that as a way to demonstrate cleaner shipping, that you see that different from what you're suggesting. In terms of creating ammonia and hydrogen for the shipping industry.Brett Rampal/CATFSure. And just as an aside an anecdote the USS Enterprise, the Nimitz class carrier that came out actually had eight nuclear reactors on it, I believe. So some of these, some of these aircraft carriers have that multiple reactors on them. A lot of my original thinking began going down the pathway of putting reactors on ships, but when we sort of looked at the balances and the pros and cons and again, the timescales for decarbonisation, you know, and where existing, you know, nuclear technology is used or could be used now, we don't see a world where long durations transportation shipping becomes ultra reliant on, at least in the near term, on on a on nuclear propulsion on the ships, because, number one, there's ports around the world that are, are non nuclear areas and won't allow nuclear vessels and everything. So therefore, you limit your, your, your access, right there. Number two, there's liability issues for operating a nuclear reactor on a ship versus operating a traditional or zero carbon fuel engine on a ship. You know, those liability issues can include security and proliferation, as well as extreme cost liability issues. And then you've also got a workforce and manpower concerns. So the the the challenges with looking at the existing marine shipping fleet and talking about a large scale transition of all of its, or a majority or a large percentage of its workers to be nuclear qualified or to work on a ship with new versus what they're used to, which is they're very well experienced professionals in fuel operations and, and safe operations of marine engines. Those are high higher barriers than we thought in the near term for looking at an option like a zero carbon particle, which is an easier transition, it seems. And then in the paper, we discussed, like you discussed icebreakers, a couple other niches where we think nuclear propulsion will continue to expand and shipping like research vessels and sort of those niche opportunities that in the near term, really what lends itself well to this before the larger picture. It just seems like a larger lift right now,Craig Easonfinally, I'm aware that's back in the 60s, late 60s, early 70s. In the US, the military or one of the the engineering course, or something like that, put a nuclear power station on an old vessel and created a barge didn't power the vessel by him. But it was used in the Panama Canal. Russia has got its floating power station that's now active up in the in the Arctic, China has got a nuclear barge that is developing should be floating sometime this year, maybe or operational next year. And I know that there's a couple of companies that are looking at nuclear power on a barge so that the nuclear power itself becomes mobile. Do you see this as being able to work alongside that hydrogen generation, then as part of this process to create a much more flexible green fuel supply chain for the shipping industry?Brett Rampal/CATFI think we see novel and deployment and novel deployment methods as being important and integral to the growth and future deployment or achieving potential of nuclear decarbonizing or supporting large scale grid, decarbonisation or large scale energy systems, decarbonisation the the mobility aspect of putting them on the barges In my opinion, I don't necessarily think is the biggest driver for why they're doing that. I think it's more a sighting issue, if you can, you know, site the reactor offshore, it's a little bit easier in a lot of cases than siting it offshore. As you can imagine, based on experience that a lot of industries have learned for offshore versus on onshore siting in similar energy production technologies. So the and if you look at what a lot of these barges did or are doing, they're being moved someplace and left there for a long time. So the Sturgis the Panama Canal barge, stay there. Forever the academic Lavasa, I'm sorry, I probably butchered the Russian name of that is in a northern port located there for a long time. And I believe that's what the Chinese are planning to do. So I think it's leveraging existing shipyard building capabilities to kind of say, Oh, hey, how can we commoditize these products better? How can we increase the manufactured content? How can we assembly line these things out, and then we can use the waterways to then transport them, and then they have implantation there. So I think that does lend itself very well to the potential options for doing zero carbon fuels, because then you could, as you, you know, alluded to before and get them closer to those ports, or locations where the users are going to be.Craig EasonThat's Breck rampolla from the Clean Air taskforce talking about the idea of generating hydrogen and ammonia from nuclear power, and using it in the shipping industry, as well as the growing interest in nuclear power stations on a barge. Of course, there is the other option of having nuclear reactors as a power source on a ship. And while this still faces a lot of challenges, not least political and societal. There are companies looking at this possibility of UK has now issued a consultation for a draft merchant chip regulation that would align itself with the iremos nuclear code for nuclear ships. Well, that's it for this episode of the air annex podcast. I'm Craig Eason, you'll find me at fathom dot world where you can read our stories on these and other topics, please visit the site and subscribe to our newsletter. And of course, subscribe to this podcast on your favourite podcast app. And share this podcast with your friends, family and colleagues who are interested in the transition and transformation of the shipping and ocean space. Until the next time, goodbye.

The devil in the detail of the CII/EEXI measures to curb shippings' CO2 emissions

Season 3, Ep. 10
The member state representatives who attended the latest meeting of the Marine Environmental Protection Committee did so remotely and battled through a growing lack of trust to finally agree the details of the two measures the IMO secretariat call the short term measures.These as anyone in shipping will likely know are the EEXI and CII.They will kick in in 2023 and while they will have an impact, have been decried by green lobby groups as not strong enough. But are they as weak as many sugest?Some of the green gorups decry these as not being able to create long term change, but are they here to do so? SUrely that will be the jo of the mid and long term measures (Market-based-measures) which will now begin to consume committee meetingtime.But also are critics only looking at the baseline average figures being talked about and not going into enough detail, particularly with regard the CII?In order to find out more about some of the deeper detail, Fathom World's Craig Eason spoke to Edwin Pang who heads up the IMO Committee of the Royal Institute of Naval Architects.Edwin has also been going into more detail than one can do in a podcast chat in inked In and you can read more about his insight into the details here.