Share
3 Minute 3Rs
3 Minute 3Rs December 2020
You’re listening to the December episode of 3 Minute 3Rs.
The papers behind the pod:
1. Protective cranial implant caps for macaques. Journal of Neuroscience Methods https://doi.org/10.1016/j.jneumeth.2020.108992
2. The ‘Cage Climber’ – A new enrichment for use in large-dimensioned mouse facilities. Applied Animal Behaviour Science https://doi.org/10.1016/j.applanim.2020.105078
3. Skin swabbing is a refined technique to collect DNA from model fish species. Scientific Reports https://www.nature.com/articles/s41598-020-75304-1
Transcript:
It’s the 3rd Thursday of December and you’re listening to 3 Minute 3Rs, your monthly recap of efforts to replace, reduce, and refine the use of animals in research. For the last episode of 2020, we’re focusing on refinements for three different animals. Let’s start big.
[NC3Rs]
Measuring the electrical activity of neurons during sensory or motor activities can reveal how the brain works.
Macaques are often used in these studies as their brains most closely resemble those of humans. Devices to access the brain and to fix the head for stable electrophysical recordings are surgically implanted under general anaesthesia. These implants are designed to integrate with the skull however the surgical wound can be slow to heal. The animals are also prone to picking at the sutures increasing the likelihood of infection.
A new paper published in Journal of Neuroscience Methods from technical and research staff at the University of Oxford and Newcastle University details how a protective cap can be used to promote wound healing. The plastic cap is adjustable to cover most primate cranial implants and can be affixed whilst the animal is under anaesthetic. Across the two facilities, the protective head cap reduced wound opening, the need to re-suture and the length of time animals needed to be administered analgesia and antibiotics.
You can find out more about the cranial caps by following the link in the description.
Next, a refinement for mice:
[NA3RsC]
Proper enrichment of mice in their home cages is important to decrease mouse stress, reduce stereotypic behaviors, and improve well-being. When developing new enrichments it’s important to ensure they benefit both males & females and do not have unintended experimental effects or increase data variability.
A new paper in Applied Animal Behavior Science describes the development and testing of a new enrichment made from recycled cage lids. Results showed that naive mice were extremely interested in these enrichments. Furthermore in a test battery assessing locomotion, anxiety, sociability, and stress physiology there was no impact on data results or variability. Furthermore, the enrichments reduced aggression.
Ultimately the authors recommend the use of structural enrichments and nesting material to satisfy mouse physical and thermal needs. To find out more, read the full paper online.
[Lab Animal]
And finally, let’s not forget about our fish. When a zebrafish or stickleback needs to be genotyped, that’s usually accomplished via fin clipping. But, a growing body of literature suggests that fish might not be too fond of being removed from their tanks and waking up some time later with a small bit of their caudal fin missing. The tissue grows back, but studies have shown increases in cortisol and anxiety-like behavior in fin clipped fish, which may affect their welfare and the scientific results obtained with them.
A new study led by William Norton at...
More episodes
View all episodes
2. Assessing enrichment, consolidating animal research guidance and understanding mouse aggression
04:25||Ep. 2February 2023 The papers behind the pod: Hobbiesiefken U et al. (2023). Rating enrichment items by female group-housed laboratory mice in multiple binary choice tests using an RFID-based tracking system. PloS one 18(1): e0278709. doi: 10.1371/journal.pone.0278709Petkov C et al. (2022). Unified ethical principles and an animal research ‘Helsinki’ declaration as foundations for international collaboration. Current Research in Neurobiology 3:100060. doi: 10.1016/j.crneur.2022.100060Weber E et al. (2023). Aggression in Group-Housed Male Mice: A Systematic Review. Animals 13(1):143. doi: 10.3390/ani13010143It’s the third Thursday of February and you’re listening to the final episode of 3 minute 3Rs, recapping the latest efforts to replace, reduce and refine the use of animals in research. Follow this link for the full transcript: https://www.nc3rs.org.uk/3-minute-3rs-podcast-february-2023-transcript1. Replacing animal-derived reagents, simulating in utero microinjections and clicker training for mouse gait assessment
04:35||Ep. 1January 2023 The papers behind the pod: Cassotta M et al. (2022). A worldwide survey on the use of animal-derived materials and reagents in scientific experimentation. Engineering in Life Sciences 22(9):561-604. doi: 10.1002/elsc.202100167 Nuber M et al. (2022). Development of a 3D simulator for training the mouse in utero electroporation. PLOS One 17(12): e0279004. doi: 10.1371/journal.pone.0279004Dickmann J et al. (2022). Clicker Training Mice for Improved Compliance in the Catwalk Test. Animals 12(24): 3545. doi: 10.3390/ani12243545Happy New Year to all 3 Minute 3Rs listeners. It’s 2023, and we’re back with three more papers highlighting efforts to replace, reduce and refine the use of animals in research. Follow this link for the full transcript: https://www.nc3rs.org.uk/3-minute-3rs-podcast-january-2023-transcript12. Kidney organoid vascularisation, implementing masking and quantitatively assessing experiment severity
04:28||Ep. 12December 2022The papers behind the pod: Menéndez ABC et al. (2022). Creating a kidney organoid-vasculature interaction model using a novel organ-on-chip system. Scientific Reports 12:20699. doi: 10.1038/s41598-022-24945-5Karp N et al. (2022). A qualitative study of the barriers to using blinding in in vivo experiments and suggestions for improvement. PLOS Biology 20(11): e3001873. doi: 10.1371/journal.pbio.3001873Talbot S et al. (2022). RELSA—A multidimensional procedure for the comparative assessment of well-being and the quantitative determination of severity in experimental procedures. Frontiers in Veterinary Science 9:937711. doi: 10.3389/fvets.2022.937711 It’s the third Thursday of December, and you’re listening to 3 Minute 3Rs, your monthly recap of efforts to replace, reduce and refine the use of animals in research. To round off 2022 we are highlighting a paper for each R.Follow this link for the full transcript: https://www.nc3rs.org.uk/3-minute-3rs-podcast-december-2022-transcript11. Assessing pain, living systematic reviews and inducing focal hypoxia in human neurons
04:28||Ep. 11November 2022The papers behind the pod: Aulehner K et al. (2022). Grimace scale, burrowing, and nest building for the assessment of post-surgical pain in mice and rats—A systematic review. Frontiers in Veterinary Science 9:930005. doi: 10.3389/fvets.2022.930005Hair K et al. (2022). ‘Living’ evidence frameworks for in vivo animal research: towards translational evidence-based medicine. BMJ Evidence-Based Medicine 2022;27:A17. doi: 10.1136/ebm-2022-EBMLive.31 Wong J et al. (2022). Electrochemically induced in vitro focal hypoxia in human neurons. Frontiers in Cell and Developmental Biology 10:968341. doi: 10.3389/fcell.2022.968341It’s the third Thursday of November, and you’re listening to 3 Minute 3Rs, your monthly recap of efforts to replace, reduce and refine the use of animals in research. Follow this link for the full transcript: https://www.nc3rs.org.uk/3-minute-3rs-podcast-november-2022-transcript10. Statistical planning, human cell cultures for toxoplasma and preventing boredom in laboratory rodents
04:05||Ep. 10October 2022The papers behind the pod: Piper, SK et al. (2022). Statistical review of animal trials—A guideline. Biometrical Journal https://doi.org/10.1002/bimj.202200061 Gargaté MJ et al. (2022). Parallel Propagation of Toxoplasma gondii In Vivo, In Vitro and in Alternate Model: Towards Less Dependence on the Mice Model. Pathogens https://doi.org/10.3390/pathogens11091038 Mieske P et al. et al. (2022). Bored at home?—A systematic review on the effect of environmental enrichment on the welfare of laboratory rats and mice. Frontiers in Veterinary Science https://doi.org/10.3389/fvets.2022.899219 It’s the third Thursday of October, and you’re listening to 3 Minute 3Rs, your monthly recap of efforts to replace, reduce and refine the use of animals in research. This month we have a paper on each R. Follow this link for the full transcript: https://nc3rs.org.uk/3-minute-3rs-podcast-october-2022-transcript9. Larger species refinement special: improving the welfare of rabbits, non-human primates and sheep
04:40||Ep. 9September 2022The papers behind the pod: Pinho RH et al. (2022). Validation of the rabbit pain behaviour scale (RPBS) to assess acute postoperative pain in rabbits (Oryctolagus cuniculus). PLoS ONE 17(5): e0268973. https://doi.org/10.1371/journal.pone.0268973 Stull C, Heagerty A and Coleman K (2022). Video Conference Technology as a Tool for Pair Introduction in Rhesus Macaques. Animals 12(14): e1783. https://doi.org/10.3390/ani12141783 Zentrich E et al. (2022). Postoperative Severity Assessment in Sheep. European Surgical Research, in press. https://doi.org/10.1159/000526058 It’s the third Thursday of September, and you’re listening to 3 Minute 3Rs, your monthly recap of efforts to replace, reduce, and refine the use of animals in research. This month we’re focusing on refinements for working with three different non-rodent species. Follow this link for the full transcript: https://nc3rs.org.uk/3-minute-3rs-podcast-september-2022-transcript8. Better behavioural research, imaging with microbots and how housing density affects mouse microbiomes
04:21||Ep. 8August 2022The papers behind the pod: Arjmand S et al. (2022). Tips and traps for behavioural animal experimentation. Acta Neuropsychiatrica, in press. https://doi.org/10.1017/neu.2022.4Wrede P et al. (2022). Real-time 3D optoacoustic tracking of cell-sized magnetic microrobots circulating in the mouse brain vasculature. Science Advances 8(19). https://doi.org/10.1126/sciadv.abm9132 Russell A et al. (2022). Reduced housing density improves statistical power of murine gut microbiota studies. Cell Reports 39(6): e110783. https://doi.org/10.1016/j.celrep.2022.110783It’s the third Thursday of August, and you’re listening to 3 Minute 3Rs, your monthly recap of efforts to replace, reduce, and refine the use of animals in research. Follow this link for the full transcript: https://nc3rs.org.uk/3-minute-3rs-podcast-august-2022-transcript7. 3Rs Prize: A benchtop organ-on-a-chip fabrication method and an ex vivo model of focal demyelination
04:12||Ep. 7July 2022The papers behind the pod: Ferreira DA et al. (2021). Alternative to Soft Lithography for the Fabrication of Organ-on-a-Chip Elastomeric-Based Devices and Microactuators. Advanced Science 8:2003273. https://doi.org/10.1002/advs.202003273Eigel D et al. (2019). Cryogel scaffolds for regionally constrained delivery of lysophosphatidylcholine to central nervous system slice cultures: A model of focal demyelination for multiple sclerosis research. Acta Biomaterialia 97:216. https://doi.org/10.1016/j.actbio.2019.08.030It’s the third Thursday of July, and you’re listening to 3 Minute 3Rs, your monthly recap of efforts to replace, reduce, and refine the use of animals in research. This month, we’ve got a special double feature highlighting the publications commended in the International 3Rs Prize, awarded by the NC3Rs and sponsored by GSK. Follow this link for the full transcript: https://nc3rs.org.uk/3-minute-3rs-podcast-july-2022-transcript6. Humane intervention points, virtual gene knockout and ex vivo brain slices for Parkinson's research
04:05||Ep. 6June 2022The papers behind the pod: Williams WO and Baneux P (2022). Humane Intervention Points: Refining endpoint terminology to incorporate non-euthanasia intervention options to improve animal welfare and preserve experimental outcomes. Laboratory Animals, in press. https://doi.org/10.1177/00236772221090801 Osorio D et al. (2022). scTenifoldKnk: An efficient virtual knockout tool for gene function predictions via single-cell gene regulatory network perturbation. Patterns 3(3): e100434. https://doi.org/10.1016/j.patter.2022.100434Moudio S et al. (2022). Exposure of α-Synuclein Aggregates to Organotypic Slice Cultures Recapitulates Key Molecular Features of Parkinson's Disease. Frontiers in Neurology 13: e826102. https://doi.org/10.3389/fneur.2022.826102 It’s the third Thursday of June, and you’re listening to 3 Minute 3Rs, your monthly recap of efforts to replace, reduce and refine the use of animals in research. Follow this link for the full transcript: https://nc3rs.org.uk/3-minute-3rs-podcast-june-2022-transcript